EE 6340: Information Theory
 Final exam - May 2012

1. Let $X_{1}, Z_{1}, Z_{2}, \cdots, Z_{n}$ be i.i.d. fair binary random variables taking values 0 or 1 . Now, define the sequence of random variables X_{i} as

$$
X_{i+1}=X_{i}+Z_{i}, \quad i=1,2, \cdots, n-1
$$

where + denotes real addition. Show that the $\mathrm{I}\left(X_{1} ; X_{2}, X_{3}, \cdots, X_{n}\right)=1 / 2$. [7 pts]
2. Let X, Y, Z be fair binary random variables with the constraint that $\mathrm{I}(X ; Y)=\mathrm{I}(Y ; Z)=$ $\mathrm{I}(X ; Z)=0$. Under this contraint, what is the minimum value of $\mathrm{H}(X, Y, Z)$? Give an example which achieves this minimum. [5 pts]
3. Let X be an exponential random variable with the probability density function

$$
f(x)= \begin{cases}e^{-x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

(a) Find the differential entropy $h(X)$. [2 pts]
(b) Find a function $g(\cdot)$ such that if $Y=g(X)$ then $h(Y)=0$. [3 pts]
4. Consider two discrete memoryless channels $\left(\mathcal{X}, p_{1}(y \mid x), \mathcal{Y}\right)$ and $\left(\mathcal{Y}, p_{2}(y \mid x), \mathcal{Z}\right)$ with input-output alphabets $\{0,1, e\}$. The transition probabilities are given below:

$Y \backslash Z$	1	e	0
1	1	0	0
e	0	1	0
0	0	1	0
$p_{2}(z \mid y)$			

(a) Find the capacity C_{1} of first channel with input X, output Y and transition probabilites $p_{1}(y \mid x)$. [3 pts]
(b) Find the capacity C_{2} of second channel with input Y, output Z and transition probabilites $p_{2}(z \mid y)$. [2 pts]
(c) Now, we cascade the two channels together so that input is X, output is Z and the transition probabilities are $p_{3}(z \mid x)=\sum_{y} p_{1}(y \mid x) p_{2}(z \mid y)$. Find the capacity C_{3} of the cascaded channel. [3 pts]
(d) Now, we allow processing in between the two cascaded channels. Say we are allowed to decode the output sequence Y^{n} of first channel, re-encode and send a different sequence \tilde{Y}^{n} thru the second channel. What is the cascaded channel capacity in this case? (Think $\left.W \rightarrow X^{n}(W) \rightarrow Y^{n} \rightarrow \tilde{Y}^{n}\left(Y^{n}\right) \rightarrow Z^{n} \rightarrow \hat{W}\right)$ [4 pts]
5. Consider a source of M symbols with probabilitites $p_{1}, p_{2}, \cdots, p_{M}$. Suppose that probabilities are arranged in descending order so that $p_{1} \geq p_{2} \geq \cdots \geq p_{M}$. We use binary Huffman code to encode the source.
(a) Show that if the most probable symbol has probability $p_{1}>2 / 5$, then that symbol should be assinged a codeword of length 1 . [4 pts]
(b) Show that if the most probable symbol has probability $p_{1}<1 / 3$, then that symbol should be assigned a codeword of length ≥ 2. [3 pts]
6. Consider the two outputs Y_{1} and Y_{2} corresponding to a single input X as

$$
\begin{aligned}
& Y_{1}=X+Z_{1} \\
& Y_{2}=X+Z_{2}
\end{aligned}
$$

where Z_{1} and Z_{2} are independent Gaussian with variances σ_{1}^{2} and σ_{2}^{2} respectively. Input power constraint is $\mathrm{E}\left\{X^{2}\right\} \leq P$.
(a) Suppose that the receiver can view both outputs Y_{1} and Y_{2}, what is the channel capacity? What type of signalling achieve capacity? [3 pts]
(b) Suppose that the receiver can view only the sum $Y=Y_{1}+Y_{2}$, what is the channel capacity? What type of signalling achieve capacity? [2 pts]
(c) Suppose that the receiver can view only the weighted sum $\bar{Y}=\alpha Y_{1}+(1-\alpha) Y_{2}$ where $0 \leq \alpha \leq 1$. Can you design α such that the channel capacity in this case is same as that of part (a). [4 pts]
7. Consider the following parallel Gaussian channel with 4 subchannels

$$
Y_{k}=k X_{k}+Z_{k}, \quad k=0,1,2,3
$$

where Z_{k} 's are i.i.d. white Gaussian noise with unit variance. Let power allotted to $k^{t h}$ subchannel be $P_{k}=\mathrm{E}\left\{X_{k}^{2}\right\}$. We have the total input power constraint $\sum_{k} P_{k} \leq P$.
(a) Find the optimal power levels P_{k} to maximize the parallel channel capacity when total power $P=3 / 2$. [2 pts]
(b) Find the maximum value of power level P_{c} so that whenever $P<P_{c}$, optimal policy uses only one of the subchannels. [3 pts]

