EE 6340: Information Theory Final exam - May 2012

1. Let $X_1, Z_1, Z_2, \dots, Z_n$ be i.i.d. fair binary random variables taking values 0 or 1. Now, define the sequence of random variables X_i as

$$X_{i+1} = X_i + Z_i, \quad i = 1, 2, \cdots, n-1,$$

where + denotes *real* addition. Show that the $I(X_1; X_2, X_3, \dots, X_n) = 1/2$. [7 pts]

- 2. Let X, Y, Z be fair binary random variables with the constraint that I(X; Y) = I(Y; Z) = I(X; Z) = 0. Under this contraint, what is the minimum value of H(X, Y, Z)? Give an example which achieves this minimum. [5 pts]
- 3. Let X be an exponential random variable with the probability density function

$$f(x) = \begin{cases} e^{-x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- (a) Find the differential entropy h(X). [2 pts]
- (b) Find a function $g(\cdot)$ such that if Y = g(X) then h(Y) = 0. [3 pts]
- 4. Consider two discrete memoryless channels $(\mathcal{X}, p_1(y|x), \mathcal{Y})$ and $(\mathcal{Y}, p_2(y|x), \mathcal{Z})$ with input-output alphabets $\{0, 1, e\}$. The transition probabilities are given below:

$X \setminus Y$	1	e	0	$Y \setminus Z$	1	e	0
1	0	1	0	 1	1	0	0
e	0	1	0	e	0	1	0
0	0	0	1	0	0	1	0
$\overline{p_1(y x)}$				$p_2(z y)$			

- (a) Find the capacity C_1 of first channel with input X, output Y and transition probabilities $p_1(y|x)$. [3 pts]
- (b) Find the capacity C_2 of second channel with input Y, output Z and transition probabilities $p_2(z|y)$. [2 pts]

- (c) Now, we cascade the two channels together so that input is X, output is Z and the transition probabilities are $p_3(z|x) = \sum_y p_1(y|x)p_2(z|y)$. Find the capacity C_3 of the cascaded channel. [3 pts]
- (d) Now, we allow processing *in between* the two cascaded channels. Say we are allowed to *decode* the output sequence Y^n of first channel, re-encode and send a different sequence \tilde{Y}^n thru the second channel. What is the cascaded channel capacity in this case? (Think $W \to X^n(W) \to Y^n \to \tilde{Y}^n(Y^n) \to Z^n \to \hat{W}$) [4 pts]
- 5. Consider a source of M symbols with probabilities p_1, p_2, \dots, p_M . Suppose that probabilities are arranged in descending order so that $p_1 \ge p_2 \ge \dots \ge p_M$. We use binary Huffman code to encode the source.
 - (a) Show that if the most probable symbol has probability $p_1 > 2/5$, then that symbol should be assinged a codeword of length 1. [4 pts]
 - (b) Show that if the most probable symbol has probability $p_1 < 1/3$, then that symbol should be assigned a codeword of length ≥ 2 . [3 pts]
- 6. Consider the two outputs Y_1 and Y_2 corresponding to a single input X as

$$Y_1 = X + Z_1$$

$$Y_2 = X + Z_2$$

where Z_1 and Z_2 are independent Gaussian with variances σ_1^2 and σ_2^2 respectively. Input power constraint is $E\{X^2\} \leq P$.

- (a) Suppose that the receiver can view both outputs Y_1 and Y_2 , what is the channel capacity? What type of signalling achieve capacity? [3 pts]
- (b) Suppose that the receiver can view only the sum $Y = Y_1 + Y_2$, what is the channel capacity? What type of signalling achieve capacity? [2 pts]
- (c) Suppose that the receiver can view only the weighted sum $\overline{Y} = \alpha Y_1 + (1 \alpha)Y_2$ where $0 \le \alpha \le 1$. Can you design α such that the channel capacity in this case is same as that of part (a). [4 pts]
- 7. Consider the following parallel Gaussian channel with 4 subchannels

$$Y_k = kX_k + Z_k, \quad k = 0, 1, 2, 3,$$

where Z_k 's are i.i.d. white Gaussian noise with unit variance. Let power allotted to k^{th} subchannel be $P_k = \mathbb{E}\{X_k^2\}$. We have the total input power constraint $\sum_k P_k \leq P$.

- (a) Find the optimal power levels P_k to maximize the parallel channel capacity when total power P = 3/2. [2 pts]
- (b) Find the maximum value of power level P_c so that whenever $P < P_c$, optimal policy uses only one of the subchannels. [3 pts]