EE 6110: Assignment 4 (RLS problems)

1. Consider an IIR LTI System with input u(n) and the output $z(n) = \alpha z(n-1) + \beta z(n-2) + \gamma u(n)$. The values of α, β, γ are unknown. The measured output is given by

$$y(n) = z(n) + v(n)$$
 where $v(n)$ is additive noise. Define $\underline{\theta} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$ and $\underline{y} = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$.

- (a) Write $\underline{y} = H\underline{\theta} + \underline{\tilde{v}}$ such that matrix H depends only on sequences $\{y(n), u(n)\}$ and vector $\underline{\tilde{v}}$ depends only on noise sequence $\{v(n)\}$.
- (b) If noise v(n) has zero mean, what is the mean of $\underline{\tilde{v}}$.
- (c) Given y and H, what is the least squares estimate of $\underline{\theta}$.
- 2. Consider the linear observation model: $\underline{y} = H\underline{\theta} + \underline{v}$. Given that H is full rank $M \times M$ square matrix.
 - (a) Find the least squares estimate $\hat{\underline{\theta}}_{LS}$ given \underline{y}, H . (Note that the standard LS formula will simplify in this case.)
 - (b) Suppose \underline{v} is i.i.d. Gaussian with variance σ^2 . Note that $\underline{\hat{\theta}}_{LS}$ is random (even if $\underline{\theta}$ is not random). Find the covariance matrix of the estimation error $\underline{\tilde{\theta}} = \underline{\theta} \underline{\hat{\theta}}_{LS}$.
 - (c) Suppose \underline{v} is i.i.d. Gaussian with variance σ^2 and suppose H is a unitary matrix. Find the value of $\mathbf{E} \|\underline{\theta} - \underline{\hat{\theta}}_{LS}\|^2$.