EE 6110: Assignment 3 (Matlab exercises) Due date - October 31, 2014

1. Let $Z(n)$ be an AR process with $Z(n)=-0.6 Z(n-1)+0.1 Z(n-2)+V(n)$ where $V(n)$ is an i.i.d. Gaussian noise with variance $\sigma_{v}^{2}=0.2$. Let the desired signal be $X(n)=Z(n)$ and the input to the adaptive filter being $\underline{Y}(n)=\left[\begin{array}{l}Z(n-1) \\ Z(n-2)\end{array}\right]$. Hence, we are interested in predicting $Z(n)$ using the past samples $\{Z(n-1), Z(n-2)\}$.
(a) For the above model, find $\sigma_{x}^{2}, R_{Y}, R_{Y X}$.
(b) Find the optimal filter $\underline{w}_{\text {opt }}$ which minimizes $\mathrm{E}\left|X(n)-\underline{w}^{*} \underline{Y}(n)\right|^{2}$ and find the correponding minimum MSE $J_{\text {min }}$.
(c) With $\underline{w}=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$, consider the MSE cost $J(\underline{w})=\mathrm{E}\left|X(n)-\underline{w}^{*} \underline{Y}(n)\right|^{2}$. For w_{1}, w_{2} in the range [-2 to 2], plot the MSE contour $J(\underline{w})$. A sample of the plot is shown in Figure 1. Useful matlab command contour.
(d) Consider the steepest descent update $\underline{w}(n+1)=\underline{w}(n)+\mu\left[R_{Y X}-R_{Y} \underline{w}(n)\right]$. Consider two different initial conditions $\underline{w}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\underline{w}(0)=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ and two different step sizes $\mu=0.02,0.2$. For each combination of step size and initial condition, plot the trajectory of $\underline{w}(n)$ for $n=1, \cdots, 5000$. Superimpose the trajectory on the MSE contour (as shown in Fig.1).
(e) Generate $Z(n)$ by filtering white noise $V(n)$ as per the AR model given above. Taking $X(n)=Z(n)$ and $\underline{Y}(n)=\left[\begin{array}{l}Z(n-1) \\ Z(n-2)\end{array}\right]$, run the LMS update $\underline{w}(n+1)=$ $\underline{w}(n)+\mu \underline{Y}(n)\left[X^{*}(n)-\underline{Y}^{*}(n) \underline{w}(n)\right]$, for $n=1, \cdots, 5000$. For all the combinations of step sizes and initial conditions given in part (d), plot the LMS trajectory superimposed as in Fig.1. Useful matlab commands randn, plot.
(f) Run the LMS with $\mu=0.02$ and the initial condition $\underline{w}(0)=\underline{w}_{\text {opt }}$ for $n=$ $1, \cdots, 50000$. Consider the corresponding error sequence $d(n)=X(n)-\underline{w}^{*}(n) \underline{Y}(n)$. Let us estimate the excess MSE as $\hat{\eta}=\left(\frac{1}{50000} \sum_{n=1}^{50000}|d(n)|^{2}\right)-J_{\text {min }}$. Compare this value with theoretical result obtained in the class $\eta=\frac{\mu}{2} \sigma_{v}^{2} \operatorname{Tr}\left(R_{Y}\right)$.
2. Consider the tracking of a time varying system. Let $Z(n)$ be an AR process with $Z(n)=-0.6 Z(n-1)+0.1 Z(n-2)-0.1 Z(n-3)-0.1 Z(n-4)+V(n)$ where $V(n)$ is i.i.d. Gaussian with variance $\sigma_{v}^{2}=0.5$. Now, $Z(n)$ is passed thru a time varying filter $\underline{h}(n)$ with 3 taps, and the noise corrupted output of the system is obtained as $X(n)=\underline{h}^{*}(n) \underline{Y}(n)+U(n)$ where $\underline{Y}(n)=\left[\begin{array}{c}Z(n) \\ Z(n-1) \\ Z(n-2)\end{array}\right]$ and $U(n)$ is i.i.d. Gaussian

noise with variance $\sigma_{u}^{2}=0.1$. The time variation of the system follows as $\underline{h}(n)=$ $\underline{h}(n-1)+\underline{q}(n)$ where $q(n)$ is i.i.d. Gaussian with covariance R_{Q}. Using $X(n)$ and $\underline{Y}(n)$ we are interested in adaptively tracking the filter response $\underline{h}(n)$.
(a) We want to generate sequence i.i.d. $\underline{q}(n)$ with covariance $R_{Q}=10^{-4} \times\left[\begin{array}{ccc}1.1 & 0.1 & 0.1 \\ 0.1 & 1.1 & 0.1 \\ 0.1 & 0.1 & 1.1\end{array}\right]$.

Towards that we generate the i.i.d. sequence $p(n)$ with covariance $R_{P}=I$ and obtain $\underline{q}(n)=A \underline{p}(n)$. Find the 3×3 matrix A^{-}. (Hint: Matrix A is related to the eigen decomposition of R_{Q}).
(b) For our model, with R_{Q} given in part (a), find the optimal step size μ_{opt} which will minimize the Excess MSE in the steady state, using the formula derived in the class (using small μ approximation).
(c) As per the specified model and R_{Q} given in part (a), generate the sequences $Z(n), X(n), \underline{Y}(n), \underline{h}(n)$ with the intial conditions $\underline{h}(0)=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. With the initial conditions $\underline{w}(0)=\underline{0}$, run the LMS algorithm for $n=1, \cdots, 2500$. Plot the time evaluation of all the three taps of $\underline{h}(n)$ and $\underline{w}(n)$. A sample plot is shown in Fig.2.
(d) Plot the theoretial EMSE approximation (small step size) as a function of μ in the range $\mu=0.001$ to 0.1 . Now, for $\mu=\left\{0.1, \mu_{\text {opt }}, 0.01,0.002\right\}$, compute the EMSE of LMS using simulations by averaging $|d(n)|^{2}$ (with more than 50000 samples for averaging) with the initialization $\underline{w}(0)=\underline{h}(0)$. Superimpose these EMSE values on the theoretical EMSE curve and write your interpretations.

।

