EE 5150: Math Methods: Quiz II - Oct/18/2012

- You are allowed to bring one hand-written formula sheet.
- If something is not clear, make/state your assumptions and proceed.
- 1. Prove that, if there exists a one-to-one linear transformation from vector space V to vector space W, then $\dim(V) \leq \dim(W)$. [2 pts]
- 2. Define the linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ such that $L \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix}$. Find the matrix representation of L with respect to the basis $\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \}$. [2 pts]

3. Consider linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^3$ such that $L \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$ and

$$L\begin{bmatrix} 4\\1\end{bmatrix} = \begin{bmatrix} 2\\2\\-1\end{bmatrix}$$
. Find $L\begin{bmatrix} -2\\3\end{bmatrix}$. [2 pts]

- 4. Find two linear transformations $L_1 : \mathbb{R}^2 \to \mathbb{R}^2$ and $L_2 : \mathbb{R}^2 \to \mathbb{R}^2$ such that $L_1L_2 = \mathbf{0}$ but $L_2L_1 \neq \mathbf{0}$. (Here **0** denotes the Zero transformation) [2 pts]
- 5. In \mathbb{R}^2 with standard inner product, find the orthogonal projection of the vector $\begin{bmatrix} a \\ b \end{bmatrix}$ onto the subspace defined by the straight line x = y [2 pts]
- 6. Prove or disprove the following statement: For the vectors $\underline{u}, \underline{v}, \underline{w}$ in an inner product space, if $\underline{u} \perp \underline{v}$ and $\underline{v} \perp \underline{w}$ then it follows that $\underline{u} \perp \underline{w}$. [2 pts]
- 7. Prove that for any $\underline{x}, \underline{y}$ in a real inner product space, $\|\underline{x} + \underline{y}\|^2 + \|\underline{x} \underline{y}\|^2 = 2(\|\underline{x}\|^2 + \|\underline{y}\|^2)$. This is called parallelogram law. [2 pts]
- 8. Let V be a real inner product space of dimension n. Let W be a subspace of V with dimension k. Let $L: V \to V$ be a transformation defined as the projection onto subspace W, that is, for $\underline{\boldsymbol{v}} \in V$, $L(\underline{\boldsymbol{v}}) = \underline{\boldsymbol{w}}$ where $\underline{\boldsymbol{w}}$ is orthogonal projection of $\underline{\boldsymbol{v}}$ onto W.
 - (a) Show that L is linear. [2 pts]
 - (b) Show that $L^2 = L$, that is, for any $\underline{v} \in V$ we have $L^2(\underline{v}) = L(\underline{v})$. [2 pts]
 - (c) A basis for V is chosen and let \mathbf{P} be matrix representation of L. Let $\tilde{L}: V \to V$ be the projection onto subspace W^{\perp} . What is the matrix representation of \tilde{L} ? [2 pts]