EE 5150: Mathematical Methods for Signal Processing Quiz I - Sep/06/2012

- 1. Say if the following statements are true or false and provide an explanation.
 - (a) If vectors $\{\underline{u}_1, \underline{u}_2, \underline{u}_3\}$ are linearly *dependent*, then there always exists scalars a, b such that $\underline{u}_1 = a\underline{u}_2 + b\underline{u}_3$. [1 pt]
 - (b) All the vectors connecting origin to the points on the line y = 2x + 1 is a subspace of \mathbb{R}^2 . [1 pt]
 - (c) If $\{\underline{u}_1, \underline{u}_2, \underline{u}_3\}$ is a basis for vector space V then $\{\underline{u}_1 + \underline{u}_3, 3\underline{u}_2, \underline{u}_1 \underline{u}_3\}$ is also a basis for V. [2 pts]
 - (d) If the matrix \mathbf{A} of size $m \times n$ has rank m then (irrespective of n) solution always exists for the equation $\mathbf{A}\underline{x} = \underline{\mathbf{b}}$ for any vector $\underline{\mathbf{b}}$ of suitable size. [2 pts]

2. Consider the matrix
$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & -7 & -3 \\ 2 & 1 & 1 & 3 \\ 1 & -1 & 8 & 6 \end{bmatrix}$$
.

- (a) Find a basis for column space of A. [2 pts]
- (b) Find a basis for null space of A. [2 pts]

(c) If
$$\underline{\boldsymbol{b}} = \begin{bmatrix} 1\\ 3\\ 4 \end{bmatrix}$$
, check if solution exists for $\boldsymbol{A}\underline{\boldsymbol{x}} = \underline{\boldsymbol{b}}$. If so, find a solution. [2 pts]

3. (a) Let V be a vector space. Let $\{\underline{u}_1, \dots, \underline{u}_m\}$ be some arbitrary vectors in V. Let $\{\alpha_{i,j} : i = 1 \text{ to } n \text{ and } j = 1 \text{ to } m\}$ be some arbitrary scalars. Consider the vectors \underline{w}_i 's generated as

$$\underline{\boldsymbol{w}}_i = \sum_{j=1}^m \alpha_{i,j} \underline{\boldsymbol{u}}_j, \text{ for } i = 1 \text{ to } n$$

Show that $\operatorname{span}\{\underline{w}_1, \cdots, \underline{w}_n\}$ is a subspace of $\operatorname{span}\{\underline{u}_1, \cdots, \underline{u}_m\}$. [3 pts]

- (b) For two matrices (with size given in subscript) $A_{m \times n}$ and $B_{n \times p}$, consider the product C = AB. Prove that $\operatorname{rank}(C) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$. [3 pts] Hint: Result from part (a) may be useful.
- (c) Let \underline{u} be a non-zero $n \times 1$ vector in \mathbb{R}^n . Consider the $n \times n$ matrix $C = \underline{u} \ \underline{u}^t$ where $(\cdot)^t$ denotes transpose operation. What is the rank of C? [2 pts] Hint: Result from part (b) may be useful.