Final Exam: EE 5150 Math Methods (26 Nov)

Notations:

- $(\cdot)^T$ denotes transpose, $(\cdot)^*$ denotes conjugate transpose, $|\cdot|$ denotes absolute value
- I_n and $\mathbf{0}_n$ denote identity matrix and zero matrix of size $n \times n$ respectively
- $A_{n \times m}$ denotes a matrix of size $n \times m$.

Useful identities:

- For square matrices A and B, det(AB) = det(A)det(B)
- $\det(I_n + C_{n \times m} D_{m \times n}) = \det(I_m + D_{m \times n} C_{n \times m})$, for any C and D of appropriate sizes

Remarks

- You are allowed to bring a single hand-written sheet of paper
- If anything is not clear, make/state your assumptions and proceed

Problems:

1. In
$$\mathbb{C}^3$$
 with standard inner product, let $\underline{\boldsymbol{x}} = \begin{bmatrix} 2\\1+j\\j \end{bmatrix}$ and $\underline{\boldsymbol{y}} = \begin{bmatrix} 2-j\\2\\1+2j \end{bmatrix}$.

- (a) For the above vectors \underline{x} and \underline{y} , verify Cauchy-Schwarz inequality and Triangle inequality. [4 pts]
- (b) Find scalars α and β such that $\alpha \underline{x} + \beta y$ and $\alpha \underline{x} \beta y$ are orthogonal. [2 pts]

2. Let $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 5\\1\\4\\-3 \end{bmatrix} \right\}$ be a subspace of \mathbb{R}^4 . Let W^{\perp} be orthogonal complement of W, that is $W^{\perp} = \left\{ \underline{\boldsymbol{x}} \in \mathbb{R}^4 \text{ such that } < \underline{\boldsymbol{x}}, \underline{\boldsymbol{y}} > = \underline{\boldsymbol{x}}^T \underline{\boldsymbol{y}} = 0, \forall \underline{\boldsymbol{y}} \in W \right\}$. (a) Find orthonormal basis for W^{\perp} . [3 pts] (b) For $\underline{\boldsymbol{v}} = \begin{bmatrix} 4\\0\\1\\2 \end{bmatrix}$, find projection of $\underline{\boldsymbol{v}}$ onto subspace W. [3 pts]

- 3. Find all the invariant subspaces in \mathbb{R}^2 for the matrix $\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. [5 pts]
- 4. Give a matrix example for each of the following conditions.
 - (a) 3×3 matrix which is not diagonalizable. [2 pts]
 - (b) $A_{2\times 2}$ such that $A^2 5A + 6I = 0$. [2 pts]
 - (c) $A_{3\times 4}$ such that the *smallest* set containing linearly *dependent* columns of A has size 3. [2 pts]
 - (d) $A_{2\times 2}$ such that col(A) = null(A). [2 pts]
- 5. Let V be a finite dimensional real inner product space. Let \underline{u} be an unit vector in V, i.e., $\langle \underline{u}, \underline{u} \rangle = 1$. Consider the *householder* transformation $H: V \to V$ defined as

$$H(\underline{x}) = \underline{x} - 2 < \underline{x}, \underline{u} > \underline{u}$$
 for all $\underline{x} \in V$

Show that

- (a) H is a linear transformation [2 pts]
- (b) $H^2 = I$, where I is the identity transformation [2 pts]
- (c) H is an isometry [2 pts]
- 6. Let \boldsymbol{A} and \boldsymbol{B} be matrices of same size.
 - (a) Show that $\operatorname{rank}(\boldsymbol{A} + \boldsymbol{B}) \leq \operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B})$ [3 pts]
 - (b) Show that $\operatorname{rank}(\boldsymbol{A} \boldsymbol{B}) \ge |\operatorname{rank}(\boldsymbol{A}) \operatorname{rank}(\boldsymbol{B})|$ [2 pts]

Hint: Think of *sum* of subspaces

- 7. Consider a complex $n \times n$ matrix **A**. Prove the following statements.
 - (a) If λ is an eigen value of \boldsymbol{A} , then $|\lambda| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{i,j}|$ where $a_{i,j}$ is the entry in i^{th} row, j^{th} column of \boldsymbol{A} [2pts]
 - (b) If λ is an eigen value of A^*A , then $\lambda \ge 0$. [2 pts]
 - (c) If **A** is unitary and λ is an eigen value of **A**, then $|\lambda| = 1$. [2 pts]
- 8. Let $\underline{u} \in \mathbb{R}^n$ be such that $\underline{u}^T \underline{u} = 1$. Consider the matrix $A = I_n + \underline{u}\underline{u}^T$
 - (a) Is \boldsymbol{A} diagonalizable? Explain your answer. [2 pts]
 - (b) Find all the eigen values of A and their algebraic multiplicity. [3 pts]
 - (c) Find/describe all the eigen vectors of \boldsymbol{A} . [3 pts]

Hint: Think about geometry of $\underline{u}\underline{u}^T$