EE 5150: Math Methods for Signal Processing Assignment 5

- 1. If U and W are orthogonal subspaces $(\underline{u} \perp \underline{w} \text{ for every } \underline{u} \in U, \underline{w} \in W)$ then show that $U \cap W = \{\underline{0}\}.$
- 2. Let S be a subspace of \mathbb{R}^4 containing vectors such that $x_1 + x_2 + x_3 + x_4 = 0$. Find a basis for S^{\perp} which contains all the vectors orthogonal to S.
- 3. Show that $\underline{x} \underline{y}$ is orthogonal to $\underline{x} + \underline{y}$ if and only if $||\underline{x}|| = ||\underline{y}||$.
- 4. Let $W = \operatorname{span}\left\{ \begin{bmatrix} j \\ 0 \\ 1 \end{bmatrix} \right\}$ in \mathbb{C}^3 with standard inner product. Find orthonormal bases for W and W^{\perp} .
- 5. Consider second degree polynomials $V = \mathbb{P}_2$ in the interval [0, 1] with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$. Find an orthonormal basis for V.

6. Let
$$W = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 5\\1\\4\\-3 \end{bmatrix} \right\}$$
 be a subspace of \mathbb{R}^4 . Let W^{\perp} be orthogonal complement of W , that is $W^{\perp} = \{\underline{\boldsymbol{x}} \in \mathbb{R}^4 \text{ such that } < \underline{\boldsymbol{x}}, \underline{\boldsymbol{y}} >= 0, \forall \underline{\boldsymbol{y}} \in W \}.$

(a) Find orthonormal basis for W^{\perp} .

(b) For
$$\underline{\boldsymbol{v}} = \begin{bmatrix} 4 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$
, find projection of $\underline{\boldsymbol{v}}$ onto subspace W .

- 7. Let V be the vector space of all $n \times n$ matrices with real entries. trace of a matrix is the sum of its diagonal entries, i.e., trace $(\mathbf{A}) = \sum_{i=1}^{n} a_{i,i}$ where $a_{m,k}$ is the entry in m^{th} row, k^{th} column of \mathbf{A} .
 - (a) Show that $\langle \boldsymbol{A}, \boldsymbol{B} \rangle = \operatorname{trace}(\boldsymbol{A}^T \boldsymbol{B})$ is a valid inner product in V.
 - (b) Let W be a subspace of V containing only diagonal matrices. Find the orthogonal complement W^{\perp} based on the above inner product.