EE 5150: Math Methods for Signal Processing Assignment 4: Submission date 5/10/12 (Friday)

1. (a) Find the matrix representation **A** for the *right shift* transformation from \mathbb{R}^3 to

$$\mathbb{R}^4$$
, i.e., vector $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is transformed into $\begin{bmatrix} 0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$

(b) Find the matrix representation \boldsymbol{B} for the *left shift* transformation from \mathbb{R}^4 to \mathbb{R}^3 ,

i.e., vector $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ is transformed into $\begin{bmatrix} x_2 \\ x_3 \\ x_3 \end{bmatrix}$.

- (c) Find the products AB and BA.
- 2. Let V be a vector space of all 2×2 matrices. Define the transformation $L: V \to \mathbb{R}^2$ as

$$L\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left[\begin{array}{cc}a+2d\\b-c\end{array}\right]$$

- (a) Show that L is a linear transformation
- (b) Find a basis for null space of L
- (c) Find a basis for range of L
- 3. Let $L : \mathbb{P}_2 \to \mathbb{P}_3$ be defined as $L(p) = x^3 p'' x^2 p' + 3p$. Let basis for \mathbb{P}_2 be $\mathcal{B} = \{1, x, x^2\}$ and let basis for \mathbb{P}_3 be $\mathcal{C} = \{3, 3x - x^2, 3x^2, x^3\}$. Find matrix representation of L with respect to the bases \mathcal{B} and \mathcal{C} . (Note that ' denotes derivative.)
- 4. Let $L_1 : V \to W$ be a linear transformation from V to W and $L_2 : W \to V$ be a linear transformation from W to V. Consider the composition $\tilde{L} = L_2 L_1$ so that \tilde{L} is a linear transformation from V to V.
 - (a) Show that if $\dim(W) < \dim(V)$ then \hat{L} is not invertible.
 - (b) Corollary: For any matrices $A_{n \times m}$ and $B_{m \times n}$, if m < n, then product AB is not invertible.
 - (c) Give an example such that \tilde{L} is invertible when $\dim(W) > \dim(V)$.

5. Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 defined as

$$L\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_1\\ x_1 - x_2\\ 2x_1 + x_2 + x_3 \end{bmatrix}$$

- (a) Is L invertible? If so, find L^{-1} .
- (b) Show that $(L^2 I)(L 3I) = 0$. (*I* is identity transformation and θ is zero transformation)
- 6. Let L be a transformation from \mathbb{P}_3 to 2×2 matrices such that

$$L(p) = \begin{bmatrix} p(1) & p(2) \\ p(3) & p(4) \end{bmatrix}$$

where p is a polynomial in \mathbb{P}_3 , i.e., $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$.

- (a) Show that L is linear
- (b) Is L invertible? Why?