EE 5150: Math Methods for Signal Processing Assignment 3

- 1. Consider the augmented matrices $[A \mid \underline{b}]$ given in first Homework set (A is the coeffecient matrix and the last column is RHS vector \underline{b}) which are reproduced below.
 - (a) Number of unknowns equal to the number of equations

ſ	2	3	1	10]	3	4	2	1		3	2	4	5]
	1	1	1	5	,	1	1	1	1	,	2	4	0	6
	4	2	2	12		2	0	4	2		1	1	1	2

(b) Number of unknowns less than the number of equations

Γ	1	2	3	2^{-}		$\begin{bmatrix} 2 \end{bmatrix}$	1	3	4		1	0	2	1]
	0	1	1	0		1	0	1	2		0	1	2	1
	3	2	0	1	,	2	4	1	8	,	2	3	10	5
	4	2	1	3		2	3	0	4		1	2	6	3

(c) Number of unknowns greater than the number of equations

Γ	1	2	0	1	3 -]	2	1	3	5	6]	0	3	-6	6	4	-5]
	1	0	2	3	1	,	1	0	2	3	3	,	3	-7	8	-5	8	9
	2	1	3	5	0		[1	2	0	1	3		3	-9	12	-9	6	15

- (a) Find a basis for column space of A
- (b) Find a basis for null space of \boldsymbol{A}
- (c) Find out about the existence/uniquencess/multiplicy of solutions for $A\underline{x} = \underline{b}$ using the basis you found for the column and null spaces of A.

2. Determine wheter the set
$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}$$
 is a basis for the space spanned by
the set $\mathcal{C} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 5\\8\\7 \end{bmatrix}, \begin{bmatrix} 3\\4\\1 \end{bmatrix} \right\}$

3. Find a basis for
$$U \cap W$$
 where $U = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\-1\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\2 \end{bmatrix} \right\}$ and
$$W = \operatorname{span} \left\{ \begin{bmatrix} 2\\8\\-4\\8 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\3\\0\\6 \end{bmatrix} \right\}$$