EE 5150: Applied Linear Algebra: Assignment 2

1. Check if the following subsets are subspaces of \mathbb{R}^n . Notation $\underline{x} = \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix}$ with $x_i \in \mathbb{R}$.

- (a) $S = \{\underline{x} : x_1 = 1\}$ (b) $S = \{\underline{x} : x_2 \ge 0\}$ (c) $S = \{\underline{x} : x_1x_2 = 0\}$ (d) $S = \{\underline{x} : x_1 + 2x_2 5x_3 = 0\}$
- 2. Let vector space $\mathcal{V} = \mathbb{R}^3$. For the set of vectors U given below, answer the following
 - i Check if $\operatorname{span}\{U\} = \mathcal{V}$.
 - ii Find a basis (denote by \tilde{U}) for span{U}.
 - iii Extend the set \tilde{U} (obtained in part [ii]) to form a basis for \mathcal{V} .

$$U = \left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\5 \end{bmatrix} \right\} \qquad U = \left\{ \begin{bmatrix} 2\\1\\-2\\4 \end{bmatrix}, \begin{bmatrix} -4\\-2\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2\\2 \end{bmatrix}, \begin{bmatrix} -1\\-2\\4 \end{bmatrix} \right\}$$
$$U = \left\{ \begin{bmatrix} 3\\2\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3\\3 \end{bmatrix} \right\} \qquad U = \left\{ \begin{bmatrix} -1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\-4\\-6 \end{bmatrix} \right\}$$

3. Consider the set $\mathcal{V} = \{\underline{x} = (x_1, x_2), \text{ with } x_2 > 0\}$. For \underline{u} and \underline{v} in \mathcal{V} and $\alpha \in \mathbb{R}$, define the addition and scalar multiplication as

$$\underline{\boldsymbol{u}} + \underline{\boldsymbol{v}} = (u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 v_2)$$

$$\alpha \underline{\boldsymbol{u}} = (\alpha u_1, u_2^{\alpha})$$

Show that \mathcal{V} is a vector space with operations defined above.

- 4. Consider a set of matrices of form $\mathcal{S} = \left\{ \begin{bmatrix} a & a+b \\ a-b & a+2b \end{bmatrix} : a, b \in \mathbb{R} \right\}.$
 - (a) Show that \mathcal{S} is a vector space with usual addition and scalar multiplication.
 - (b) Find two different basis for \mathcal{S} .
- 5. Answer if the following statements are true or false. Provide logical arguments (proof) to support your answer.
 - (a) In a vector space, size of a spanning set can not be smaller than size of a linearly independent set.
 - (b) For vector spaces V and W, if $\dim(V) = \dim(W)$ then V = W.
 - (c) Suppose vectors from set $\mathcal{U} = \{\underline{u}_1, \cdots, \underline{u}_n\}$ can be written as linear combination of vectors from set $\mathcal{W} = \{\underline{\boldsymbol{w}}_1, \cdots, \underline{\boldsymbol{w}}_m\}$, that is, $\exists \alpha_{i,j}$ such that $\underline{\boldsymbol{u}}_i = \sum_{j=1}^m \alpha_{i,j} \underline{\boldsymbol{w}}_j$ for $i = 1, \dots, n$. Then it follows that $\operatorname{span}(\mathcal{U}) = \operatorname{span}(\mathcal{W})$.