EE 5150: Assignment 1

- 1. For the augmented matrices given below, find the *reduced* row echelon form. Check for consistency and find the general form of solution (if consistent).
 - (a) Number of unknowns equal to the number of equations

ſ	2	3	1	10 -		3	4	2	1		3	2	4	5]	
	1	1	1	5	,	1	1	1	1	,	2	4	0	6	
	4	2	2	12		2	0	4	2		1	1	1	2	

(b) Number of unknowns less than the number of equations

$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$	4] [1]	$0 \ 2 \ 1$
1 0 1	2 0	$1 \ 2 \ 1$
	8 , 2	3 10 5
2 3 0		$2 \ 6 \ 3$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{ccccc} 1 & 0 & 1 & 2 \\ 2 & 4 & 1 & 8 \end{array}\right , \left \begin{array}{c} 0 \\ 2 \end{array}\right $

(c) Number of unknowns greater than the number of equations

Γ	1	2	0	1	3]	$\begin{bmatrix} 2 \end{bmatrix}$	1	3	5	6]	0	3	-6	6	4	-5]
	1	0	2	3	1	,	1	0	2	3	3	,	3	-7	8	-5	8	9
	2	1	3	5	0		[1	2	0	1	3		3	-9	12	-9	6	15

- 2. Using your results from the above problem, can you identify the connection between the number of pivots, number of unknowns and the uniqueness of solution?
- 3. Say, \boldsymbol{A} is an *invertible* $n \times n$ matrix. Consider the augmented matrix (of size $n \times 2n$) $\boldsymbol{B} = [\boldsymbol{A} \ \boldsymbol{I}]$ where \boldsymbol{I} is an $n \times n$ identity matrix. Denote the reduced row echelon form of \boldsymbol{B} to be $[\boldsymbol{C} \ \boldsymbol{D}]$ where \boldsymbol{C} and \boldsymbol{D} are $n \times n$ matrices. What can you say about \boldsymbol{C} and \boldsymbol{D} ? (Hint: There is a connection to inverse of \boldsymbol{A}).