EE 5140: Tutorial: Digital Modulation

1. With $A=4 \mathrm{kHZ}$ and $B=10 \mathrm{kHz}$, define the trapezoidal spectrum

$$
P(f)= \begin{cases}1, & |f| \leq A \\ \frac{B-|f|}{B-A} & A \leq|f| \leq B \\ 0 & \text { Otherwise }\end{cases}
$$

(a) Show that the time domain pulse is of the form $p(t)=\alpha \operatorname{sinc}(\beta t) \operatorname{sinc}(\gamma t)$ and find the values of α, β and γ explicitly. Hint: Trapeziod is obtained by convolving two rectangles.
(b) What is the maximum symbol rate for which the pulse $p(t)$ satisfies the Nyquist criterion?
(c) Can the pulse $p(t)$ be used for Nyquist signalling for bit rate of 18 kbps with 8-PSK constellation?
(d) Can the pulse $p(t)$ be used for Nyquist signalling for bit rate of 25 kbps with QPSK constellation?
(e) Can the pulse $p(t)$ be used for Nyquist signalling for bit rate of 21 kbps with 8-PSK constellation?
2. Consider the pulse $p(t)=\operatorname{sinc}(\alpha t) \operatorname{sinc}(\beta t)$ where α and β have to be determined.
(a) How should α and β be chosen such that $p(t)$ satisfies Nyquist criterion with excess bandwidth parameter 0.5 for the data rate of 40 Mbps using 16-QAM constellation. Specify the bandwidth occupied for this case.
(b) How should α and β be chosen such that $p(t)$ satisfies Nyquist criterion for both the following cases: 40 Mbps using 16-QAM and 8 Mbps using 8-PSK. Specify the bandwidth occupied in this case.
3. Suppose the pulse $p(t)$ satisfies Nyquist criterion at symbol rate K symbols per second.
(a) Verify/show that the same pulse $p(t)$ will satisfy Nyquist criterion for $\frac{K}{M}$ symbols per second where M is any positive integer.
(b) Verify/show that the scaled pulse $p(a t)$ for $a>0$ satisfies Nyquist criterion at symbol rate $a K$ symbols per second.
4. Raised Cosine Pulse: Consider the two spectrums $R(f)$ and $C(f)$ defined as

$$
\begin{aligned}
& R(f)= \begin{cases}1, & -\frac{1}{2} \leq f \leq \frac{1}{2} \\
0, & \text { Otherwise. }\end{cases} \\
& C(f)= \begin{cases}\frac{\pi}{2 a} \cos \left(\frac{\pi}{a} f\right), & -\frac{a}{2} \leq f \leq \frac{a}{2} \\
0, & \text { Otherwise. }\end{cases}
\end{aligned}
$$

(a) Sketch the spectrums $R(f)$ and $C f)$ assuming $0<a<1$
(b) Compute the spectrum $P(f)=R(f) * C(f)$ where $*$ denotes convolution. This corresponds to the raised cosine spectrum.
(c) Find the time domain pulse as $p(t)=r(t) c(t)$ where $r(t)$ and $c(t)$ are inverse fouriere transforms of $R(f)$ and $C(f)$ respectively
(d) Where are the zeros of $p(t)$? What is the highest symbol rate for which the scaled pulse $p(t / T)$ is ISI-free, satisfying the Nyquist condition?

