EE 5140: Digital Modulation and Coding: QUIZ 2

1. (10 Marks) Let $p(t)=I_{[0,1]}(t)$ denote a rectangular pulse of unit height and unit duration (ranging from $t=0$ to $t=1$). A digital communication system uses the following waveforms for signaling:
$s_{1}(t)=p(t)+p(t-2), s_{2}(t)=p(t-1)+p(t-3), s_{3}(t)=p(t-1)+p(t-2)$, $s_{4}(t)=p(t-1)-p(t-3)$.
(a) Find the smallest distance $\left(d_{\text {min }}\right)$ between the above set of signal waveforms, that is,

$$
d_{\min }=\min _{\substack{p, q \\ p \neq q}}\left\|s_{p}(t)-s_{q}(t)\right\|
$$

(b) Assume that the prior probabilities are $\pi_{2}=\pi_{3}=\pi_{4}=\frac{1}{3}$ and $\pi_{1}=0$. With AWGN of variance $\sigma^{2}=10$, let the received waveform be $y(t)=3 p(t)+3 p(t-1)-2 p(t-2)+p(t-3)$. Find the output of the minimum probability of error (MPE) decoder.
2. (10 Marks) For a BPSK signalling scheme $(b= \pm 1)$, consider the following discrete time observation model (real case)

$$
\begin{aligned}
& y_{1}=2 b+w_{1} \\
& y_{2}=-4 b+w_{2}
\end{aligned}
$$

where w_{1} and w_{2} are zero-mean independent Gaussian random variables with variances σ^{2} and $4 \sigma^{2}$ respectively. Show that maximum likelihood rule to detect b from observations y_{1} and y_{2} is of the form

$$
\hat{b}= \begin{cases}1 & \text { if } y_{1}+\alpha y_{2}>0 \\ -1 & \text { if } y_{1}+\alpha y_{2}<0\end{cases}
$$

and find the value of constant α.

