Hypothesis Testing
A general framework for solving detection problems

Finite number ob
(Wide Range of Applications)

- Communications -
- Radar
- Medicine
- Finance
-weather etc
To formulate hypothesis testing problem solve
we need conditional edf/pdf
Bayes's theorem
Total Probability Theorem.
Conditional pdf/cdf.
Let x be a random variable (related to X)

Let λ be a virion...
Let A be an event (related to X) with $P(A)>0$
Conditional calf (definition)

$$
F_{x}(x \mid A)=\frac{P\{X \leq x, A\}}{P(A)}=\operatorname{Pr}\{X \leq x \mid A\}
$$

Conditional pdf

$$
f_{x}(x \mid A)=\frac{d}{d x} F_{x}(x \mid A)
$$

Note: $\quad \int_{-\infty}^{\infty} f_{x}(x / A) d x$

$$
\begin{aligned}
& =F_{x}(\infty\{A) \\
& =\frac{P\{x \leq \infty, A\}}{P(A)} \\
& =P(A) / P(A) \\
& =1
\end{aligned}
$$

Bayes Rule

$$
\begin{aligned}
P(A \mid X \leq x) & =\frac{P(A, X \leq x)}{P(X \leq x)} \\
& =P_{2}(X \leq x \mid A\} P(A)
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{Pr}\{X \leq x) \\
P(A \mid X \leq x)=\frac{F_{X}(x \mid A) P(A)}{F_{X}(x)}
\end{array}
$$

Now,

$$
\begin{aligned}
& P(A \mid x<X \leq x+\Delta x) \\
& =\frac{P(x<X \leq x+\Delta x \mid A) P(A)}{P(x<X \leq x+\Delta x)} \\
& =\frac{\left(F_{X}(x+\Delta x \mid A)-F_{X}(x \mid A)\right] P(A)}{F_{X}(x+\Delta x)-F_{X}(x)}
\end{aligned}
$$

Taking limit as $s x \rightarrow 0$

$$
\begin{aligned}
P(A \mid X=x) & =\lim _{\Delta x \rightarrow 0} \frac{\frac{F_{x}\left(x+\left.\Delta x\right|_{A}\right)-F_{X}(x \mid A)}{\Delta x} P(A)}{F_{X}(x+\Delta x)-F_{x}(x)} \\
P(A \mid X=x) & =\frac{f_{X}\left(\left.x\right|_{A}\right) P(A)}{f_{X}(x)}
\end{aligned}
$$

$$
P(A \mid X=x)=\frac{f_{x}(x \mid A) P(A)}{f_{x}(x)}
$$

Total Probability Theorem

Suppose $A_{1}, A_{2}, \ldots, A_{M}$ are M events such that

$$
\begin{aligned}
A_{i} \cap A_{j} & =\oint \quad \text { if } \quad i \neq j \\
\bigcup_{i=1}^{M} A_{i} & =\Omega \quad \text { (sample space) }
\end{aligned}
$$

Now,

$$
\begin{aligned}
F_{X}(x) & =\operatorname{Pr}\{X \leq x\} \\
& =\operatorname{Pr}\{X \leq x, \Omega\} \\
& =P\left(X \leq x, \bigcup_{i=1}^{M} A_{i}\right) \\
\begin{array}{l}
\text { Union d } \\
\begin{array}{l}
\text { intersection } \\
\text { distribute }
\end{array}
\end{array} & =P\left(\bigcup \cup\left(\vec{A}_{i}, X \leq x\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { intersection } \downarrow \\
\text { distribute }
\end{array}
\end{array}=P\left(\bigcup_{i=1}^{M}\left(\vec{A}_{i}, X \leq x\right)\right) \\
& \begin{aligned}
\text { Since } \\
A_{i}^{\prime} \text { are } \\
\text { disjoint }
\end{aligned}=\sum_{i=1}^{M} P\left(A_{i}, X \leq x\right) \\
&=\sum_{i=1}^{M} P\left(X \leq x \mid A_{i}\right) P\left(A_{i}\right) \\
& F_{X}(X)=\sum_{i=1}^{M} F_{X}\left(x \mid A_{i}\right) P\left(A_{i}\right)
\end{aligned}
$$

Similarly

$$
f_{X}(x)=\sum_{i=1}^{M} f_{X}\left(x \mid A_{i}\right) P\left(A_{i}\right)
$$

x \qquad

Hypothesis testing

State of Nature
\rightarrow say we have M states
\rightarrow denote as $H_{1}, H_{2}, \ldots H_{m}$
\rightarrow Prior information
$\operatorname{Pr}\left\{\mathrm{H}_{i}\right.$ is true state $\}$

$$
\begin{aligned}
1 \leq i \leq M \quad & =P(H i) \\
& =\pi i
\end{aligned}
$$

Ti's are known

Observation space $\left(\mathbb{R}\right.$ or $\left.\mathbb{R}^{p}\right)$
\rightarrow Measurements/observations
are noisy
\rightarrow observation space contains
all the possible
(y) measurements we can get
\rightarrow Observations are related to
state of nature H_{i}
then conditional oof

$$
f\left(y \mid H_{i}\right)
$$

Priers
(π)

Decision Rule

- For each outcome y in
observation space,
pick a guess on the
state of nature.

Seervation space
observation space

$$
\delta(y)=\left\{\begin{array}{lll}
H_{1} & \text { if } y \in \Gamma_{1} \\
H_{2} & \text { if } y \in \Gamma_{2} \\
H_{M} & \text { if } & y \in \Gamma_{M}
\end{array}\right.
$$

- Decision mule partitions the observafim space into disjoint regions $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{m}$

Problem: Given $\pi_{i}, f_{y}\left(y \mid H_{i}\right)$,
chose the decision mile $\left(\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{m}\right)$
in an optimal wall
(For instance, minimize
the chance of making an error)

