EE 5140: Tutorial 3
 Signal Space Concepts, Hypothesis Testing

September 15, 2017

1. A binary communication system uses the following two waveforms for signaling.

$$
s_{0}(t)=\cos \left(\frac{2 \pi t}{T}\right), s_{1}(t)=\cos \left(\frac{4 \pi t}{T}\right)(0 \leq t \leq T)
$$

(a) Find a set of orthonormal bases for these waveforms.
(b) Express $s_{0}(t)$ and $s_{1}(t)$ as a linear combination of the bases found in (a).
(c) Sketch a signal space (constellation) representation of $s_{0}(t)$ and $s_{1}(t)$.
(d) Repeat $(a)-(c)$ for $s_{0}(t)=\cos \left(\frac{\pi t}{T}\right), s_{1}(t)=\cos \left(\frac{3 \pi t}{2 T}\right)(0 \leq t \leq T)$.
2. Let $p(t)=I_{[0,1]}(t)$ denote a rectangular pulse of unit duration (ranging from $t=0$ to $t=1$). A digital communication system uses the following waveforms for signaling: $s_{1}(t)=p(t)+p(t-2), s_{2}(t)=p(t-1)+p(t-3), s_{3}(t)=p(t-1)+2 p(t-2)$, $s_{4}(t)=p(t-1)-p(t-3)$
(a) Find a set of orthonormal bases for $\left\{s_{i}(t)\right\}, i=1,2,3,4$, just by inspection, without any computations. Write down the resulting vector representations of the signals $\left\{s_{i}(t)\right\}$, denote them as $\left\{\underline{s}_{i}\right\}, i=1,2,3,4$.
(b) Using Gram-Schmidt orthogonalization procedure (starting with $s_{1}(t)$ and going in sequence), find a set of orthonormal bases for the signal space spanned by $\left\{s_{i}(t)\right\}, i=1,2,3,4$. Find the resulting vector representation of the signals $\left\{s_{i}(t)\right\}$, denote them as $\left\{\underline{\tilde{s}}_{i}\right\}, i=1,2,3,4$.
(c) Find and compare the energies (squared distances from the origin) in both the representations $\left\|\underline{s}_{i}\right\|^{2}$ and $\left\|\underline{\tilde{s}}_{i}\right\|^{2}$ for $(i=1,2,3,4)$. Also compare the relative (squared) distances in both representations, $\left\|\underline{s}_{k}-\underline{s}_{l}\right\|^{2}$ and $\left\|\tilde{\underline{s}}_{k}-\underline{\tilde{s}}_{l}\right\|^{2}$, where $k, l \in\{1,2,3,4\}$.
(d) Find the vector representation for $s(t)=3 p(t)+3 p(t-1)-2 p(t-2)+p(t-3)$ using the bases found in part (b).
3. Irrelevant statitstics: A receiver in a digital communication system has two received outputs r_{1} and r_{2} available for decision making, where

$$
r_{1}=s+n_{1} \text { and } r_{2}=n_{1}+n_{2}
$$

Assume that the transmitted symbol s can be one of $s_{1}=+\sqrt{E_{s}}$ or $s_{2}=-\sqrt{E_{s}}$ with equal probability. Assume that n_{1} and n_{2} are iid Gaussian random variables with zero mean and variance $=\sigma^{2}$. Also assume that s, n_{1} and n_{2} are independent.
(a) Derive the optimum (MAP/ML) decision rule.
(b) Does the optimal rule depend on r_{2} ? Give an explanation for your answer.

Note: Simplify the optimum decision rule to the form: $\hat{s}=s_{1}$ if $g\left(r_{1}, r_{2}\right) \geq 0$ and $\hat{s}=s_{2}$ if $g\left(r_{1}, r_{2}\right)<0$, where \hat{s} is the decoded symbol. You need to find the function $g(\cdot, \cdot)$

