EE 5140: Tutorial 3 Signal Space Concepts, Hypothesis Testing

September 15, 2017

1. A binary communication system uses the following two waveforms for signaling.

 $s_0(t) = \cos(\frac{2\pi t}{T}), \ s_1(t) = \cos(\frac{4\pi t}{T}) \ (0 \le t \le T)$

- (a) Find a set of orthonormal bases for these waveforms.
- (b) Express $s_0(t)$ and $s_1(t)$ as a linear combination of the bases found in (a).
- (c) Sketch a signal space (constellation) representation of $s_0(t)$ and $s_1(t)$.
- (d) Repeat (a) (c) for $s_0(t) = \cos(\frac{\pi t}{T}), s_1(t) = \cos(\frac{3\pi t}{2T}) \ (0 \le t \le T).$
- 2. Let $p(t) = I_{[0,1]}(t)$ denote a rectangular pulse of unit duration (ranging from t = 0 to t = 1). A digital communication system uses the following waveforms for signaling: $s_1(t) = p(t) + p(t-2), s_2(t) = p(t-1) + p(t-3), s_3(t) = p(t-1) + 2p(t-2), s_4(t) = p(t-1) - p(t-3)$
 - (a) Find a set of orthonormal bases for $\{s_i(t)\}, i = 1, 2, 3, 4, \text{ just by inspection}, without any computations. Write down the resulting vector representations of the signals <math>\{s_i(t)\}$, denote them as $\{\underline{s}_i\}, i = 1, 2, 3, 4$.
 - (b) Using Gram-Schmidt orthogonalization procedure (starting with s₁(t) and going in sequence), find a set of orthonormal bases for the signal space spanned by {s_i(t)}, i = 1, 2, 3, 4. Find the resulting vector representation of the signals {s_i(t)}, denote them as {<u>š</u>_i}, i = 1, 2, 3, 4.
 - (c) Find and compare the energies (squared distances from the origin) in both the representations $||\underline{s}_i||^2$ and $||\underline{\tilde{s}}_i||^2$ for (i = 1, 2, 3, 4). Also compare the relative (squared) distances in both representations, $||\underline{s}_k \underline{s}_l||^2$ and $||\underline{\tilde{s}}_k \underline{\tilde{s}}_l||^2$, where $k, l \in \{1, 2, 3, 4\}$.
 - (d) Find the vector representation for s(t) = 3p(t) + 3p(t-1) 2p(t-2) + p(t-3) using the bases found in part (b).
- 3. Irrelevant statistics: A receiver in a digital communication system has two received outputs r_1 and r_2 available for decision making, where

$$r_1 = s + n_1$$
 and $r_2 = n_1 + n_2$

Assume that the transmitted symbol s can be one of $s_1 = +\sqrt{E_s}$ or $s_2 = -\sqrt{E_s}$ with equal probability. Assume that n_1 and n_2 are iid Gaussian random variables with zero mean and variance $= \sigma^2$. Also assume that s, n_1 and n_2 are independent.

- (a) Derive the optimum (MAP/ML) decision rule.
- (b) Does the optimal rule depend on r_2 ? Give an explanation for your answer.

Note: Simplify the optimum decision rule to the form: $\hat{s} = s_1$ if $g(r_1, r_2) \ge 0$ and $\hat{s} = s_2$ if $g(r_1, r_2) < 0$, where \hat{s} is the decoded symbol. You need to find the function $g(\cdot, \cdot)$