EE5130 - Assignment 2 Submissions due by 17/03

All the problems are from 'An Introduction to Signal Detection and Estimation' by Vincent Poor.

• ch2, prob19 Consider the following pair of hypothesis concerning a sequence Y_1, Y_2, \dots, Y_n of independent Gaussian random variables

$$\mathcal{H}_0$$
 : $Y_k \sim \mathcal{N}\left(\mu_0, \sigma_0^2\right), \qquad k = 1, 2, \cdots, n$

versus

$$\mathcal{H}_1$$
 : $Y_k \sim \mathcal{N}\left(\mu_1, \sigma_1^2\right), \qquad k = 1, 2, \cdots, n$

where μ_0, σ_0^2, μ_1 and σ_1^2 are known constants.

- (a) Show that likelihood ratio can be expressed as a function of the parameters $\mu_0, \sigma_0^2, \mu_1 \text{ and } \sigma_1^2$ and the quantities $\sum_{k=1}^n Y_k^2$ and $\sum_{k=1}^n Y_k$.
- (b) Describe the Neyman-Pearson test for the two cases $(\mu_0 = \mu_1 \text{ and } \sigma_1^2 > \sigma_0^2)$ and $(\sigma_1^2 = \sigma_0^2 \text{ and } \mu_1 > \mu_0)$
- (c) Find the thresholds and ROC's for the case $\mu_0 = \mu_1$ and $\sigma_1^2 > \sigma_0^2$ with n = 1.
- ch2,prob20 Consider the hypothesis of above problem with $\mu \triangleq \mu_1 > \mu_0 = 0$ and $\sigma^2 \triangleq \sigma_0^2 > \sigma_1^2 > 0$. Does there exist a uniformly most powerful test of these hypothesis under the assumption that μ is known and σ^2 is not? If so, find it and show it is UMP. If not, show why and find the generalized likelihood ratio test.
- ch3,prob7 Consider the hypothesis pair

$$\mathcal{H}_0: Y_k = N_k, \ k = 1, 2, \cdots, n$$

versus

$$\mathcal{H}_1: Y_k = N_k + \Theta S_k, \, k = 1, 2, \cdots, n$$

where $\underline{N} \sim \mathcal{N}(\underline{0}, \mathbf{C})$, \underline{s} is known and Θ is a random variable independent of \underline{N}

(a) Suppose that Θ is a discrete random variable taking +1 and -1 with equal probabilities (i.e, $\Pr(\Theta = +1) = \Pr(\Theta = -1) = 0.5$). Find optimal Neyman Pearson detector with probability of false alarm constraint $P_F \leq \alpha$ and find corresponding ROC. (Hint: $\cosh(x)$ is monotonically increasing in |x|.)

(b) Suppose that $\Theta \sim \mathcal{N}(0, \tilde{\sigma}^2)$. Assuming that noise covariance $C = \sigma^2 \mathbf{I}$, show that likelihood ratio is of the form

$$\mathcal{L}(y) = k_1 e^{k_2 \|\underline{s}^T \underline{y}\|^2}$$

where k_1 and k_2 are positive constants. Find k_2 .

- ch3,prob8 Suppose we have the observations, $Y_k = N_k + \theta S_k$, $k = 1, 2, \dots, n$ where $N \sim \mathcal{N}(\underline{0}, \mathbf{I})$ and where S_1, S_2, \dots, S_n are i.i.d. random variables independent of \underline{N} , and each taking values +1 and -1 with equal probabilities of 0.5.
 - (a) Find the likelihood ration for testing $\mathcal{H}_0: \theta = 0$ versus $\mathcal{H}_1: \theta = A$, where A is a known constant.
 - (b) For the case n = 1, find the Neyman Pearson rule and the corresponding detection probability for false alarm $\alpha \in (0, 1)$, for the hypothesis of (a).
 - (c) Is there a UMP test of \mathcal{H}_0 : $\theta = 0$ versus \mathcal{H}_1 : $\theta \neq 0$ in this model? If so, why and what is it? If not, why not? Consider the cases n = 1 and n > 1 separately.
- ch3,prob9 Consider an observed random n-dimensional vector <u>Y</u> that satisfies one of the two hypotheses,

$$\mathcal{H}_0: y = \underline{N}$$

versus

$$\mathcal{H}_1: \underline{y} = \underline{N} + A \left[(1 - \Theta) \underline{s}^{(0)} + \Theta \underline{s}^{(1)} \right],$$

where $N \sim \mathcal{N}(\underline{0}, \mathbf{I})$; the quantity A is a positive, nonrandom scalar; the random parameter Θ is independent of \underline{N} and takes the values 0 and 1 with equal probabilities of $\frac{1}{2}$; the signals $\underline{s}^{(0)}$ and $\underline{s}^{(1)}$ are known orthogonal signals, that is, they satisfy the condition

$$\sum_{k=1}^{n} s_{k}^{(l)} s_{k}^{(m)} = \begin{cases} 1 & \text{if } m = l \\ 0 & \text{if } m \neq l \end{cases}$$

- (a) Suppose the value of A is known. Find the likelihood ratio between hypotheses \mathcal{H}_0 and \mathcal{H}_1 .
- (b) Consider a composite hypothesis testing problem:

$$\mathcal{H}_0: A = 0$$

versus

$$\mathcal{H}_1: A > 0$$

Show that a locally most powerful test of \mathcal{H}_0 versus \mathcal{H}_1 is given by

$$\sum_{k=1}^{n} y_k \left[s_k^{(0)} + s_k^{(1)} \right] \stackrel{>}{<} \eta$$

(c) Find the receiver operating characteristics $(P_D \text{ Vs } P_F)$ of the detector given in part(b) for a given fixed value of A.

• ch3,prob13 Consider the model

$$Y_k = \theta^{\frac{1}{2}} s_k R_k + N_k, k = 1, 2, \cdots, n$$

where s_1, s_2, \dots, s_n is a known signal sequence, $\theta \ge 0$ is a constant, and R_1, R_2, \dots, R_n , N_1, N_2, \dots, N_n are i.i.d. $\mathcal{N}(0, 1)$ random variables.

(a) Consider the hypothesis pair

$$\mathcal{H}_0: \theta = 0$$

versus

 $\mathcal{H}_1: \theta = A$

where A is a known positive constant. Describe the structure of Neyman-Pearson detector.

(b) Consider now the hypothesis pair

$$\mathcal{H}_0: \theta = 0$$

versus

 $\mathcal{H}_1: \theta > 0$

Under what conditions on s_1, s_2, \dots, s_n , does a UMP exist?

(c) For the general sequence $s_1, s_2, ..., s_n$, find LMP.