

Multi-band RF Time Delay Element based on Frequency Translation

Gaurav Agrawal, Sankaran Aniruddhan, Radha Krishna Ganti Dept. of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India ee12s056@ee.iitm.ac.in, ani@ee.iitm.ac.in, rganti @ee.iitm.ac.in

Motivation

- Single-channel full-duplex wireless :
- Adaptive cancellation of strong TX leakage at the RX
- Time delay requirements of the order of several RF carrier cycles
- Cancellation highly sensitive to amplitude and delay mismatch

Proposed Technique: Better time delay approximation

- For narrowband signal, time delay can be seen as **Envelope delay + carrier phase shift (0** 2π)
- Mathematical representation:

$$x(t-\tau) = a(t-\tau) \cos[\omega_c(t-\tau) - \varphi(t-\tau)]$$
$$= a(t-\tau) \cos[\omega_c t - \theta - \varphi(t-\tau)]$$

Where $\theta = \omega_c \tau \pmod{2\pi}$

 $\cos \omega_{c} t$ $a(t-\tau)\cos[\phi(t-\tau)] \cos(\omega_{c} t-\theta)$

- Gain of +1, -1 and 0 implemented by MOS switches.
 > 45° phase step
- Due to mixer switching, output also contains signal around odd LO harmonics.
 - Can be suppressed by filtering

Phase Range

- LPF with $f_c \gg BW$ acts as a Linear phase filter → Use LPF as a time delay
- Most modern modulation schemes have asymmetric baseband spectra → Quadrature down-conversion
- Another implementation of the same topology is obtained by expanding the shifted carrier term :

Performance Comparison

Parameters	This Work	[2]	[3]	[4]
Topology	Frequency Translation	Active RTPS	Vector Modulator	Switched TLPS
Frequency (GHz)	Multi-band	2.4-2.5	1-2.1	2.5-3.2
Phase tuning range (°)	360	120	90	360
Gain (dB)	-3.4/-13	-5 to 0	4.8	-2.5
Input noise current (pA/ \sqrt{Hz})	28	280	101	37
Power (mW)	9.84	111	4.2	60
Area (mm ²)	0.10	0.36	0.06	4.16
Technology	130 nm CMOS	180 nm CMOS	180 nm CMOS	180 nm CMOS

For a narrowband signal, the delay can be approximated by phase shift of the carrier only

 $x(t-\tau) \approx a(t) \cos[\omega_c(t-\tau) - \varphi(t)]$

 $= a(t) \cos[\omega_c t - \theta - \varphi(t)]$

Where $\theta = \omega_c \tau$

 Good approximation only when the 'signal envelope' does not change significantly during delay time

Prior approach 2: Reflection Type Phase Shifters

- By changing the complex termination of a circulator/ coupler, the phase of signal can be changed [2]
 - X Implementation uses Inductors \rightarrow Bulky and lossy
 - X Not multi-band in nature

- sinto_ct
 Desired LO phase shift obtained by applying suitable weights to baseband quadrature signals
 ✓ Phase shift of high frequency LO not required
- An alternate architecture eliminating baseband summer :

CMOS Implementation

Conclusion

 A better approximation to true time delay is demonstrated based on frequency translation.

- The proposed architecture is capable of operating across multiple frequency bands.
- Implementation with passive mixers is likely to benefit immensely with downscaling of CMOS technology in

Prior approach 3: Vector Modulator based PS

- Add suitably weighted quadrature components [3]
 - X Quadrature splitters are narrow-band
 - X Active circuits produce noise, distortion and are

power hungry at RF

- Fully differential current mode implementation with 25% duty-cycle LO driven passive mixer
 Direct summation of output RF current
 - Excellent Linearity, negligible flicker noise
- R_s and R_L depend on circuit impedance levels
- LPF configured to provide envelope delay of 2.5 ns (≈ 6 LO cycles at 2.5 GHz)
 ➢ Can be tuned using capacitor C.
- Carrier phase tuned by changing cos θ and sin θ
 Always between -1 and +1, irrespective of carrier → Multi-band operation possible

terms of area and power consumption.

References

[1] H. Zarei *et al.*, "A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers," *Proc. IEEE Int. Solid State Circuits Conf.*, 2004, pp.392-534.

[2] Y. Zheng *et al.*, "An ultra-compact CMOS variable phase shifter for 2.4 GHz ISM applications", *IEEE Trans. Microw. Theory Tech.*, vol. 56, no. 6, pp. 1349-1354, 2008.

[3] Y. Huang *et al.,* "An Ultra-Compact, Linearly-Controlled Variable Phase Shifter Designed With a Novel RC Poly-Phase Filter," *IEEE Trans. Microw. Theory Tech.*, vol. 60, no. 2, pp. 301-310, 2012.

[4] M. Meghdadi *et al.*, "A 6-bit CMOS phase shifter for S-band," *IEEE Trans. Microw. Theory Tech.*, vol. 58, no. 12, pp. 3519-3526, 2010.