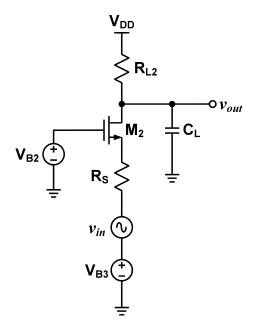
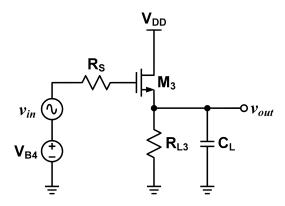

Assignment: #2

Due Date and Time: Feb. 17, 2020, 11:59PM


PROBLEM 1. Common Source (CS) Amplifier

Given: $V_{DD}=1.3V$, $R_S=50\Omega$, $R_{L1}=0.9k\Omega$ and $C_L=1pF$. The operating points of M_1 are as follows: $I_d=1mA$, $g_m=8.2mA/V$, $g_{ds}=0.3mA/V$, $g_{mb}=2.2mA/V$, $C_{gs}=31fF$, $C_{gd}=14fF$, $C_{gb}=1fF$, $C_{db}=28fF$, $C_{sb}=31fF$. Bulk of M_1 is grounded.

- (a) Draw the small signal equivalent model of the above CS amplifier and find $v_{out}(s)/v_{in}(s)$.
- (b) Find DC Gain, poles and zeroes of the transfer function. Use approximations as necessary.
- (c) Plot the magnitude and phase of $v_{out}(s)/v_{in}(s)$ with and without the approximations.


PROBLEM 2. Common Gate (CG) Amplifier

Given: $V_{DD}=1.3V$, $R_S=50\Omega$, $R_{L2}=0.8k\Omega$ and $C_L=1pF$. The operating points of M_2 are as follows: $I_d=1mA$, $V_{ds}=0.9V$, $g_m=8mA/V$, $g_{ds}=0.3mA/V$, $g_{mb}=2.1mA/V$, $C_{gs}=30fF$, $C_{gd}=13fF$, $C_{gb}=0.8fF$, $C_{db}=26fF$, $C_{sb}=29fF$. Bulk of M_2 is grounded.

- (a) Draw the small signal equivalent model of the above CG amplifier and find $v_{out}(s)/v_{in}(s)$.
- (b) Find DC Gain, poles and zeroes of the transfer function. Use approximations as necessary.
- (c) Plot the magnitude and phase of $v_{out}(s)/v_{in}(s)$ with and without the approximations.

PROBLEM 3. Source Follower

Given: $V_{DD}=1.3V$, $R_S=50\Omega$, $R_{L3}=0.5k\Omega$ and $C_L=1pF$. The operating points of M_3 are as follows: $I_d=1mA$, $g_m=7.4mA/V$, $g_{ds}=0.3mA/V$, $g_{mb}=1.8mA/V$, $C_{gs}=25fF$, $C_{gd}=11fF$, $C_{gb}=0.4fF$, $C_{db}=21fF$, $C_{sb}=23fF$. Bulk of M_3 is grounded.

- (a) Draw the small signal equivalent model of the above source follower and find $v_{out}(s)/v_{in}(s)$.
- (b) Find DC Gain, poles and zeroes of the transfer function. Use approximations as necessary.
- (c) Plot the magnitude and phase of $v_{out}(s)/v_{in}(s)$ with and without the approximations.