1) gain <
2) linearity
3) \(\eta \)
4) noise (008)
5) Post

- Device \(W \)s are in several mm
- \(L > L_{\text{min}} \) may give better linearity but larger \(C_g \) & \(C_d \)
- \(I_{\text{DC}} \) of device is low due to large \(W \) \(\Rightarrow \) Can save power

- Swing is limited
- \(C_{pv} @ (A) \)
- \(V_{A} \) swing is small \(\Rightarrow V_{D} \), small (better linearity)
- Stability
- \(R_{out} \) is larger
- Breakdown voltage stresses are low

Core device: \(98 \text{mm}, 1.2 \text{V} \)
\(\Rightarrow I/o, -250 \text{nm}, 2.5 \text{V} \)
- \(V_{DRAIN} \) - choose equal to \(V_{SOURCE} \)
- \(L = L_{\text{min}}, V = V_{DRAIN}, I_{DC} \)
- \(V_{0} \) - choose such that
 a) \(V_{A} \) is large enough for linearity
 b) \(M_{2} \) does not go into triode
Linear

\[x(t) \rightarrow y(t) \]

\[x(t) = a(t) \cos(w_0 t + \phi(t)) \]

\[y(t) = A(t) \cos(w_0 t + \phi(t) + \theta(t)) \]

If \(A(t) \gg \cos \text{ signal} \) \(\Rightarrow \):

\[y(t) \approx A \cos \left[w_0 t + \phi(t) + \theta(A(t)) \right] \]

\[\Rightarrow \text{AM-AM change} \]

\[\Rightarrow \text{AM-PM change} \]

\[\eta_{\text{max}} = 25 \% \]

\[\eta_{\text{max}} = 50 \% \]

\[\eta \]

\[P_{\text{out}} \]

\[P_{\text{in}} \]

\[\eta = \frac{P_{\text{out}}}{P_{\text{in}}} \]

\[\eta_{\text{max}} = \frac{P_{\text{out}}}{P_{\text{in}} + P_{\text{out}}} \]

\[P_{\text{in}} \text{ is small} \]

\[P_{\text{out}} \text{ is added efficiently} \]

\[\text{when gain is not large} \]