Lec 16

b) $Z_s = sL_s$

$$Z_{in} = sL_s + \frac{1}{sC_s} + \frac{g_m L_s}{C_s}$$

- $g_m L_s / C_s = W T L_s$

Set f_0, I_{bias}, $W T L_s$ independently

- Add another degree of freedom

1. Add cap C_x in parallel to C_s

 $Z_{in}' = \frac{g_m}{G_s + C_x} \times \text{real}(Z_{in})$

2. Add L_s in series with the gate

 $$f_0 = \frac{1}{2\pi \sqrt{C_s (G_s + L_s)}}$$

- Low noise (no physical resistor)
- Small $S_{11} \Rightarrow W T L_s = 50\Omega$

- Make L_s & C_s resonate @ derived freq f_0

 Constraint:

 $$\frac{C_s}{G_s} \times I_{bias}$$

III. C_s @ source of c.s.

$$Z_{in} = \frac{1}{sC_s} + \frac{1}{s C_{gs}}$$

$$Z_{in} = \frac{1}{C_s} + \frac{1}{C_s} + \frac{g_m}{s^2 G_s C_s}$$

\Rightarrow -ve resistance

\Rightarrow freq. dependent
\[Q_{in} = \frac{W(L_g + L_s)}{2R_s} \]

- \(L_d - C_d \) => Swings are better
 - OOB filtering better
 - BW limitation (\(L_s \))

- \(\text{Gain, NF, linearity, BW} \)
- Narrowband LNA
- \(\text{BW dependence on} \quad Q_{in} \quad \text{and input clipping} \)
Gain: \(V_{gs} = \frac{V_{in}}{\alpha} \)

\[V_{gs} = \frac{V_{in}}{\alpha} \]

\[i_d = \frac{V_{in}}{R_{in}} \cdot V_s \]

\[V_{out} = g_m \cdot i_d \cdot V_{in} \cdot V_s \]

Gain: \(\frac{V_{o}}{V_{s}} = g_m \cdot i_d \cdot R_{in} \)

a) More gain than normal C-S-A.
 Dep. on \(R_{in} \)

b) NF better than normal C-S-A.
 Dep. on \(R_{in} \)

c) Linearity worse than normal C-S-A.