Q-relation in T_0 & T_1 matches

\[Q = w_0 \cdot \frac{\text{Energy stored}}{\text{Avg. power loss}} \]

We want to prove the relation:

\[Q = Q_L + Q_R \]

R_L is the equivalent input impedance of the right-side L-match $(L_2 - C_2)$

Power is dissipated only in R_L

\[\frac{\text{Non}}{R_L} = \frac{V_i^2}{R_L} \quad \text{(1)} \]

Current through L_1 & $L_2 = \frac{V_i}{R_L}$ \quad \text{(2)}

From (1) & (2)

\[Q = w_0 \cdot \frac{\frac{1}{2} (L_1 + L_2) \left(\frac{V_i}{R_L}\right)^2}{\frac{1}{2} \frac{\text{Non}}{R_L}} \]

\[= w_0 \cdot \frac{L_1 + L_2}{R_L} \cdot \frac{V_i^2}{R_L} \]

\[= w_0 \cdot \frac{(L_1 + L_2) \cdot \frac{V_i^2}{R_L}}{R_L} = Q_L + Q_R \]