Two-stage Fully-differential Opamp

* \(V_{cm1} \) \text{ control gates of } M_o \text{ or } M_s/M_y \\
* \(V_{cm2} \) \text{ control gates of } M_s/M_o \\
 \text{ or gates of } M_s/M_y \\
 \text{ or gate of } M_o \\
M_s/M_y \text{ - pseudo diff. pairs} \\
4 \text{ have CM gain}
\[V_{cm1_{\text{ref}}} = V_{DD} - V_{SA5} / 2 \]

\[V_{cm2_{\text{ref}}} = V_{DD} / 2 \] for max swing

Separate CMFB

Stage 1

* Control gates of \(M_{by} \)
* Set \((V_{OP1} + V_{OM1}) / 2 = V_{DD} - V_{SA5} / 2 \)

\[= V_{cm1_{\text{ref}}} \]

* Use CM detector which is non-resistive
Stage 2

* $V_{cm,ref} = V_{DD}/2$

* resistive CM detector

Common

* Compensation

* V_{ic} 1-stage opamp in CMFB ideal

* OTA_1 - nmos input pair w/ pmos load

* OTA_2 - pmos input pair w/ nmos load

Single f.b. loop

![Diagram of a single feedback loop circuit with labeled components and connections](image-url)
Single f,b, loop

* 3 stages in feedback, lots of gain \Rightarrow\text{harder to stabilise}
* Reduce OTA gain
 - use diode connected loads
* C_c - can be designed to stabilise CMFB loop as well.