Lec 29

1-stage opamps - cannot drive resistive loads

\[G_m \]

\[V_o \]

\[C \cdot D \cdot \text{amp } X (\text{swing limit problem}) \]

\[(1\text{-stage opamp}) \]

\[V_1 \rightarrow + \]

\[V_2 \rightarrow - \]

\[Z_L \]

\[\text{Opamp (w} = \text{sat}) \]
Two-stage opamp

1) DC gain

\[
\frac{G_{m_1} G_{m_2}}{G_o_1 G_o_2}
\]

w/ resistive load \(R_L \ll G_{o_1}, G_{o_2} \)

\[
DC \text{ gain} = \frac{G_{m_1} G_{m_2}}{G_{o_1} G_{o_2}}
\]

+ optimize 1st stage for DC gain

2) \(W_n = \frac{G_{m_1}}{C} \)
\[\left(\frac{V_o}{\text{Vin}} \right) \]

3) \[W_n = \frac{G_m}{C} \]

\[\begin{align*}
\text{2 poles} \\
\text{1 zero}
\end{align*} \]

\[\frac{G_{m1}(G_{m2} - 8C)}{\left\{ G_{o1} G_{o2} + 3 \left[C(G_{m2} + G_{o1} + G_{o2}) \right] + G_{o1} C_1 + G_{o2} C_2 \right\} + \Delta^2 (C_1 C + C_2 C + C_1 C_2)^2} \]
DC gain looks ok

\(z_1 = + \frac{Gm_v}{C} \) (RHP zero)

\(ax^2 + bx + c = 0 \quad \Rightarrow \quad \alpha, \beta \) are not

\(\alpha, \beta \) are far apart

\(\alpha \approx -\frac{C}{b}, \quad \beta \approx -\frac{b}{a} \)

for an opamp: \(\beta_1 = \text{dominant pole} \)

\(\beta_2 = \text{N-D. pole} \)

\[\beta_1 \approx -\frac{C}{b} = -\frac{G_{o_1}, G_{o_{2}}}{b} \]

\[= \frac{G_{o_1}}{C \left(\frac{G_{m_v}}{G_{o_{2}}} + 1 + \frac{G_{o_1}}{G_{o_{2}}} \right) + C_1 + \frac{G_{o_1}}{G_{o_{2}}} C_2} \]

\[= \frac{G_{o_1}}{C \cdot \left(\frac{G_{m_v}}{G_{o_{2}}} \right)} = \frac{G_{o_1} G_{o_{2}}}{G_{m_v} C} \]
\[p_2 = \frac{-b}{a} = -\frac{c(C_{m_2} + G_{0_2} + V_{0_2}) + C_{1}h_{21} + C_{1}h_{22}}{C_2 + \frac{C + C_1}{C + C_1}} \]

divide \(\text{VR & DR} \) by \(\frac{C + C_1}{C + C_1} \)

\[p_1 = -\frac{C_{m_1}G_{m_1} + C_{0_1} + C_0}{\frac{C_2}{C + C_1} + \frac{C_1}{C + C_1}} \]

pole @ node \(Y \)

\[\frac{C_{eff}}{C_{eff}} \]

\[V_0 \]

\[C_2 \]

\[C \]

\[C_1 \]

\[C \]

\[C_1 \]

\[G_{m_1} \]

\[C_0 = \frac{G_{m_1}C}{C + C_1} \]