EE5390 Analog Integrated Circuit Design

Assignment 2
(Monday, March 18, 2013)

Figure 1: Problem 1

1. (a) Setup the differential equation for the system above.
(b) V_{i} is 1 V for a long time and changes to 0 V at $\mathrm{t}=0$. What is the equation for $\mathrm{t}>0$?
(c) Assume that the solution is of the form $\mathrm{V}_{\mathrm{p}} \exp (\sigma t)$. Obtain the equation from which you will determine σ (You are not required to solve it analytically).
(d) Express the above equation as $f(\sigma)=0$. Sketch $f(\sigma)$. Determine the extremum of $f(\sigma)$ in terms of T_{d}. For what value of T_{d} does the extremum become equal to zero? Plot the curves in Matlab and show the solutions.
(e) Assume that the solution is of the form $\mathrm{V}_{\mathrm{p}} \exp ((\sigma+\mathrm{j} \omega) \mathrm{t})$. Obtain the equations from which you will determine σ and ω (You are not required to solve them). Plot the curves in Matlab and show the solutions.
(f) Reduce the above to a single equation in ω.
2) Fig. 2(a) shows a nonlinearity f enclosed in a negative feedback loop with a feedback fraction β. Fig. 2(b) shows a nonlinearity f preceded by an attenuation factor.
(a) In each case, denote the transfer characteristic of the overall system by g, i.e. $\mathrm{V}_{0}=$ $g(\mathrm{Vi})$ and calculate the first three terms of the Taylor series of g about the operating point of the circuit in terms of f and its derivatives. Assume that $f(0)=0$.

(a)

(b)

(c)

Figure 2: Problem 2
(b) Fig. 2(c) shows the linear small signal equivalent circuit from V_{i} to V_{o} with an additional input $V_{n l}$. For the systems in Fig. 2(a) and Fig. 2(b), compute the small signal equivalent gain A and the additional input $V_{n l}$. What do you infer from the results?

