Lecture 35: Wideband Amplifiers - II

VII Zero-peaked C-s. Amplifier

\[Z_s(s) = R_s \parallel \frac{1}{\alpha C_s} = \frac{R_s}{1 + \alpha C_s R_s} \]

\[G_m(s) = \frac{g_m}{1 + g_m Z_s(s)} \]

\[Z_L(s) = \frac{R_L}{1 + \alpha C_L R_L} \]

\[\Rightarrow G_m(s) = \frac{g_m}{1 + \frac{g_m R_s}{1 + \alpha C_s R_s}} = \frac{g_m}{1 + \frac{g_m R_s}{1 + \alpha C_s R_s}} \cdot \frac{1 + \alpha C_s R_s}{1 + \alpha C_s R_s} \]

\[= \frac{g_m}{1 + \frac{g_m R_s}{1 + \alpha C_s R_s}} \cdot \frac{1 + \alpha C_s R_s}{1 + \alpha C_s \frac{R_s}{g_m R_s}} \]

\[\Rightarrow G_m(s) = G_m(s) \cdot Z_L(s) \]

\[A_v(s) = G_m(s) \cdot Z_L(s) = G_m(s) \cdot \frac{R_L}{1 + \frac{\alpha C_s}{g_m}} \cdot \frac{1 + \alpha C_s R_s}{1 + \alpha C_s \frac{R_s}{g_m}} \]
\[(G_{m0} R_L) \left[\frac{1 + \frac{G_m R_s}{1 + \frac{G_m}{C_L R_L}}}{1 + \frac{G_m}{C_L R_L}} \right] - \frac{1}{1 + \frac{G_m}{C_L R_L}} \]

DC gain

Pole-zero cancellation

High freq. pole

Pole \(\frac{(G_m / C_L R_L)}{} \)

Overall response

\[f_T - doubling \]

\[\omega_T = 2 \pi f_T = \frac{g_m}{C_{gs} + C_{gd}} \approx \frac{g_m}{C_{gs}} = \frac{g_m}{C_{in}} \]

(i) **Diff-pair:**

\[i_{od} = i_1 - i_2 \]

\[g_{m1} = g_{m1,2} \text{ unchanged} \]

\[C_{id} = (C_{gs1}) \text{ series } (C_{gs2}) \]

\[f_T' \approx 2 f_T \]
Remember that for a single transistor

\[f_T = \frac{g_m}{C_{gs}} \times \sqrt{I_{bias}} \]
(long-channel)

\[I_{bias} \rightarrow 2I_{bias} \Rightarrow f_T \rightarrow 1.41f_T \] (best case)

But diff. pair; \(2I_{bias} \Rightarrow f_T' = 2f_T \)

* Diff signal path may not be convenient

(i) Single-ended \(f_T \)-doubler (similar to Darlington pair)

* Interchange \(C_1 \) & \(S \) connections on one of the diff. pair devices & sum the outputs

* Both devices are biased at \(I_{bias} \)

Batties \(f_T \)-doubler (Tektronix)

* \(M_2-M_3 \) is a current mirror \(\Rightarrow \) equal \(I_{bias} \)
but $C_{gs2} \& C_{gs3}$ are in parallel

$\Rightarrow C_{as} = (C_{gs1})$ series $(C_{gs2} \parallel C_{gs3})$

$f'_T \approx (1.5) f_T$

* f_T - doublers will not work well if C_{is} limited by other factors

\Rightarrow load cap C_L

\Rightarrow parasitic C_{so} cap

Cascaded Amplifiers

$\begin{align*}
\text{Vin} \rightarrow D \rightarrow \cdots \rightarrow D \rightarrow \text{Vout} \\
1 & 2 & \cdots & n
\end{align*}$

* All n amplifiers are identical

* Each stage has single-pole response

$A(s) = \frac{A_0}{1 + s/w_0}$

Overall cascade TF is

$H(s) = \left(\frac{A_0}{1 + s/w_0} \right)^n$
* find -3dB BW of the cascade \((w_{on}) \):

at \(w = w_{on} \),

\[
|H(\omega)| = \frac{1}{\sqrt{2}} |H(0)|
\]

\[
\begin{align*}
\frac{A_0}{\sqrt{1 + \left(\frac{w_{on}}{w_o} \right)^2}} &= \frac{1}{\sqrt{2}} A_0^n \\
\Rightarrow w_{on} &= w_o \sqrt{2^n - 1}
\end{align*}
\]

BW shrinkage

Recall that \(A_0 w_o = w_u \) \(\Rightarrow \)

\[
\frac{w_{on}}{A_0} = \frac{w_u}{w_o} \sqrt{2^n - 1}
\]

a) BW shrinkage

* as \(n \to \infty \), \(w_{on} \to 0 \)

* as \(n \to \infty \), DC gain \(A_{on} = A_0^n \to \infty \)

* we want to find approximate expression for \(w_{on} \) as \(f(n) \)

\[
2^n = \exp \left\{ \ln (2^n) \right\} = \exp \left\{ \frac{1}{n} \ln 2 \right\}
\]

for large \(n \), we the first two terms in

expansion

\[
\exp \left\{ \frac{1}{n} \ln 2 \right\} \approx 1 \frac{1}{n} \ln 2
\]

\[
\Rightarrow w_{on} \approx w_o \sqrt{\frac{1}{n} \ln 2} \approx \frac{0.883 w_o}{\sqrt{n}}
\]
i.e. BW shrinks as $\sqrt[\nu]{n}$ for large n

$n \geq 4 \Rightarrow \text{error} < 5\%$

b) **Optimum gain per stage**

Given total gain A_{tot}, we want to find **optimal** n & **maximize** BW

$$A_0 = A_{\text{tot}} \Rightarrow A_0 = A_{\text{tot}}^{\frac{1}{\nu n}}$$

$$W_{\text{on}} = \frac{W_n}{A_{\text{tot}}} \cdot \sqrt{\frac{1}{2^{\nu n} - 1}}$$

apply $\frac{dW_{\text{on}}}{dn} = 0$

After some algebra:

$$n_{\text{opt.}} = \frac{\ln 2}{\ln \left\{1 + \frac{\ln 2}{2 \ln A_{\text{tot}}}\right\}}$$

For large A_{tot},

$$\ln \left\{1 + \frac{\ln 2}{2 \ln A_{\text{tot}}}\right\} \approx \frac{\ln 2}{2 \ln A_{\text{tot}}}$$

$$\ln(1 + x) \approx x \text{ for } x \ll 1$$

$$\Rightarrow n_{\text{opt.}} \approx 2 \frac{\ln A_{\text{tot}}}{\ln 2}$$
optimum gain/Stage:

\[A_{0,\text{opt}} = (A_{\text{tot}})^{\frac{1}{\gamma_{\text{opt}}}} = \exp \left\{ \frac{1}{\gamma_{\text{opt}}} \ln A_{\text{tot}} \right\} \]

\[\approx e^{\frac{1}{2}} \]

\[A_{0,\text{opt}} = \sqrt{e} \]

optimum BW:

\[\omega_{n,\text{opt}} = \frac{W_n}{A_{\text{tot}}^{\frac{1}{\gamma_{\text{opt}}}}} \sqrt{\frac{1}{2} \gamma_{\text{opt}} - 1} \]

\[\approx \frac{W_n}{\sqrt{e}} \left[\exp \left\{ \frac{1}{\gamma_{\text{opt}}} \ln 2 \right\} - 1 \right]^{\frac{1}{2}} \]

\[\omega_{n,\text{opt}} \approx W_n \sqrt{\frac{\ln 2}{2e \ln A_{\text{tot}}}} \]

\[\omega_{n,\text{opt}} \approx \frac{0.357 W_n}{\sqrt{\ln A_{\text{tot}}}} \]

In other words,

* \(BW \times \sqrt{\ln a} = \text{constant} \)

* If \(A_{\text{tot}} \to A_{\text{tot}} \times 100 \), \(BW \to < BW \times 2 \)

* Overall amp does not have constant \(G \times BW \) product (obviously, be cause \(G \times BW \) is constant only for single-pole systems)
* Gain product for this cascaded amp

\[G = A_{\text{tot}} \cdot W_0 \]

\[= A_{\text{tot}} \cdot \frac{0.357W_0}{\sqrt{\ln(A_{\text{tot}})}} \Rightarrow \text{increases without bound} \]

Gain-bandwidth-delay Tradeoff

* Delay is less important in systems with 1-way comm. (e.g. TV, optical fibre comm.)
* Coupling between A & BW is weak for higher order cascaded systems
* If delay can be arbitrary, what A or B can be achieved?

* Recall: \(BW \propto \frac{1}{\text{rise time}} \)

* Imagine an amp that stores energy in input step for a long time, then dumps it suddenly into an output \(\Rightarrow \) very fast rise time \(\Rightarrow \) high BW

Distributed Amplifier (Travelling Wave Amp.)

![Distributed Amplifier Diagram](image-url)
* inputs to transistors supplied by tapped delay line
* output fed into another tapped delay line
* assume input has a voltage step.
 → after a delay through each line, it appears at transistor inputs
 → each transistor generates current equal to \(g_m \times \text{input step} \)
 → currents of all transistors sum coherently in time, if delays of input & output line are matched

* at each point of the tapped delay line,
 \[\text{Zin} = \frac{Z_0}{2} \]

* overall gain \(Av = \frac{n \cdot g_m \cdot Z_0}{2} \) for \(n \) stages

→ \(Av \propto n \)
→ \(Av > 0 \) if \(g_m > 0 \)
→ BW does not factor directly into tradeoff
→ assume that \(C_{in} \&\ C_{out} \) of transistors are absorbed into \(RLCG \) of TDL
→ \(C_{in} > C_{out} \) ⇒ matching between TDLs is difficult \(\{ C_{gs} > C_{db} \} \)
* Can be power-hungry
* TDLs can be replaced by lumped LC equivalents (artificial T-lines)
* Main advantage: You can achieve significant gain @ freq. close to \(f_r \)
* High gain & low NF not possible
* Area is large
* \(Z_0 \)'s for G & D T-lines need not be the same
* If T-lines are lossy, \(A_v \to 0 \) as \(N \to \infty \)

\[\text{Vin in gate line decays exponentially} \]
\[\Rightarrow A_v \text{ increases linearly with } n \]
\[\Rightarrow n_{opt.} \text{ exists for a given set of TDL's and MOSFETS.} \]

Artificial T-lines
* Has BW limitation because of lumped LC (ideal lossless TDL has no BW limitation)
* \(T_{delay} = \sqrt{LC} \text{ per LC-section} \)
* (Ideal TDL \(T_{del.} = \sqrt{LC} \cdot z \), \(z=\text{length} \))
\[Z_{in} = j \omega L \frac{1}{2} \left[1 \pm \sqrt{1 - \frac{4}{\omega^2 LC}} \right] \]

\[\Rightarrow \text{cutoff} = \frac{2}{\sqrt{LC}} \quad \text{cutoff frequency} \]

* Choose \(LC \) for

 \[\Rightarrow \text{min. loss & attenuation} \]

 \[\Rightarrow \text{cutoff } > \text{required BW} \]

 \[\Rightarrow \text{desired } T_{\text{delay}} \]

 \[\Rightarrow \text{constant group delay (min. dispersion)} \]

* for a lossy line, constant G.D. \(\Rightarrow RC = CL \)

\[\Rightarrow \frac{1}{\tau} = \frac{C}{L} \quad \text{equal time constants} \]