Lecture 34: Wideband Amplifiers - I

Applications:
- PCB chip-to-chip links
- Optical fibre communications
- Wideband wireline comm. (e.g. TV)
- Measurement instrument front-ends (e.g. Oscilloscopes)
- Wireless: UWB radio & multiband radios

ABW product

* C.S. amplifier driving identical stage

\[
\frac{V_{out}(s)}{V_{in}} = AV(s)
\]

\[
AV(s) = \frac{g_m R_{ds}}{1 + sC_L R_{ds}}
\]

DC gain \(A_0 = g_m R_{ds} \)

\[
W_{3dB} = W_0 = \frac{1}{C_L R_{ds}}
\]

Unity gain freq. \(W_u = A_0 W_0 = \frac{g_m}{C_L} \)
* Increasing power cannot take us far:

\[g_m \]

* \(\frac{g_m}{C_L} \) = constant

* If \(W \uparrow \Rightarrow g_m \uparrow \)

* But so does \(C_L \)

\[\Rightarrow \frac{g_m}{C_L} = \text{constant} \]

* Cascade a number of single-pole amps can accomplish this, but \(\Rightarrow \) more delay

\[\Rightarrow \text{Gain - BW - Delay tradeoff is fundamental} \]
BW Enhancement Techniques

1) **Shunt Peaking**

- **Gain:**

 ![Gain Diagram]

 \[g_{mL} \]

- **Frequency:**

 \[\omega_0 = \frac{1}{\sqrt{L C}} \]

 * \(L \) introduces a zero

 (\(\omega \) rises with \(f \) even)

 \[\Rightarrow \text{broader freq. range} \]

 than \(\omega_0 \) is possible

* In the time domain: assume an input voltage step

 \[\Rightarrow \text{inductive delay current flow in branch containing } R, L \]

 \[\Rightarrow \text{more current available for charging } C \]

 \[\Rightarrow \text{rise time is reduced} \]

 \[\text{i.e. BW is increased} \]

\[Z(s) = (sL + R) \frac{1}{sC} \]

\[= \frac{R(s + \frac{1}{R})}{s^2 L C + s R C + 1} \]

\[\{ \text{Av}(s) = 9m \mid \text{II}(j\omega) \} \]

\[\Rightarrow \text{study } |Z(j\omega)| \]
\[\Rightarrow 2 \text{ poles (complex conjugate is possible)} \]
\[1 \text{ zero } w(z) = -\frac{R}{L} \]

Define:
(i) original 3dB BW \(w_0 = \frac{1}{RC} \)
(ii) time constant corresponding to zero \(\tau = \frac{1}{R} \)
(iii) \(m = \frac{\text{original time constant}}{\text{new time constant}} = \frac{RC}{L/R} = \frac{1}{w_0 \tau} \)

\[\Rightarrow z(s) = \frac{\delta z + 1}{s^2 + \delta z s + 1} \]

\[\frac{|z(jw)|}{R} = \sqrt{\frac{(\frac{w^2 c^2}{1-w^2 c^2})^2 + (w c m)^2}{(1-w^2 c^2)^2 + (w c m)^2}} \]

\(w = w_{3dB}, \quad \frac{|z(jw)|}{R} = \frac{\sqrt{2}}{\sqrt{2}} \)

\[\Rightarrow \frac{1 + \frac{w^2 c^2}{1-w^2 c^2}}{(1-w^2 c^2)^2 + (w c m)^2} = \frac{1}{2} \]

Let \(\alpha = w^2 c^2 \)

\[\Rightarrow \frac{1 + \alpha}{(1 - \alpha x)^2 + \alpha x} = \frac{1}{2} \]

\[\Rightarrow 2 + 2\alpha = \alpha x + 2mx + 1 + \alpha x \]
\[m^2 x^2 + (m^2 - 2m - 2)x - 1 = 0 \]

\[\Rightarrow x = \frac{(2m + 2 - m^2) \pm \sqrt{(2m + 2 - m^2)^2 + 4m^2}}{2m} \]

only +ve root because \(x = \omega^2 c^2 > 0 \)

\[x = \frac{1}{m^2} \left\{ (m+1-m^2) \pm \sqrt{(m+1-m^2)^2 + m^2} \right\} \]

\[x = (W_{3dB} \cdot \omega)^2 = \left(\frac{W_{3dB}}{W_0} \right)^2 \cdot (\omega_0 \cdot c)^2 \]

\[= \left(\frac{W_{3dB}}{W_0} \right)^2 \cdot \frac{1}{m^2} \]

\[\Rightarrow \frac{W_{3dB}}{W_0} = \sqrt{\left(\frac{m^2}{2} + m + 1 \right) + \sqrt{\left(\frac{m^2}{2} + m + 1 \right)^2 + m^2}} \]

* You can plot \(\frac{W_{3dB}}{W_0} \) as a function of \(m \)

* Also plot \(\frac{Z(j\omega)}{R} \) as a function of \(m \)

1) For max BW extension,

\[m = \sqrt{2^2} = 1.41 \]

\[\Rightarrow \frac{W_{3dB}}{W_0} = 1.85 \] at no increase in power!

\[\frac{W_{3dB}}{W_0} = \text{BW extension factor (BWEF)} \]
Problem: almost 20% peaking in freq. response.

![Gain vs Frequency Graph](image)

- Set |z| = R @ \(w_0 \) to moderate peaking
 - Solving for \(m \) gives \(m = 2 \)

\[
W_{3dB} = W_0 \sqrt{1 + \sqrt{5}} \approx 1.8W_0
\]

- BW extension almost the same
- Peaking ~3% \(\{ \text{often-used optimum} \} \)
2) Maximally flat response (Butterworth)
 \[|Z(j\omega)|^2 = \text{maximum # of derivatives where value is zero at DC} \]
 \[m = 1 + \sqrt{2} = 2.41 \]
 \[\Rightarrow \omega_{3\text{dB}} = 1.72 \omega_0. \]

3) Even with maximally flat response, phase distortion may occur. (IISD)
 \[\Rightarrow \text{optimize for group-delay response} \]
 e.g. optical comm. applications, UWB

+ Ideal wide band amp \(\Rightarrow \) phase \(\propto \) linearly with freq. (i.e. same delay for all freq.) \(\Rightarrow \) \(\frac{d\phi}{d\omega} = \text{constant over freq.} \)
+ Non-linear phase response \(\Rightarrow \) unequal delay of freq. components
 \(\Rightarrow \) group-delay distortion
+ Maximally flat group delay:
 \[T_D(\omega) = -\frac{d\phi}{d\omega} \]
 \(\Rightarrow \) maximize # of derivatives of \(T_D(\omega) \) where value is zero at DC.
after lots of algebra:
\[m \approx 3.1 \]
\[\Rightarrow w_1 \approx 1.12 \]

* conditions for maximally flat gain and delay do not coincide, so tradeoff is involved.

Design:
Given: DC gain, load cap C, \(\omega_2 \omega_3 \),
constraint on max BW/mag response,
phase response

\[\omega_0 = \frac{\omega_2 \omega_3}{BWXF} = \frac{1}{RC} \Rightarrow (R) \]
\[AV_{ac} = 9m \Rightarrow (g_m) \]
\[m = \frac{RC}{L/2} \Rightarrow L = \frac{R^2C}{m} \Rightarrow (L) \]

* \(R \) is in series with \(L \)
\[\Rightarrow \] low-Q \(L \) is ok, absorb series \(R_s \) into \(R \)

* Emphasize more on area \(\Rightarrow \) max \(L \) in minimum area
\[\Rightarrow \] series stacked structures are popular
<table>
<thead>
<tr>
<th>Condition</th>
<th>(m = \frac{R^2C}{L})</th>
<th>(BW \times F)</th>
<th>Normalised peak freq. response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max BW</td>
<td>1.41</td>
<td>1.85</td>
<td>1.19</td>
</tr>
<tr>
<td>(</td>
<td>Z</td>
<td>= R @ \omega_0)</td>
<td>2</td>
</tr>
<tr>
<td>Minimally flat</td>
<td>2.41</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>Group delay</td>
<td>3.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>No shunt peaking</td>
<td>(\infty)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Series Peaking

\[
\begin{align*}
V_{in} & \rightarrow R & L_2 & \rightarrow \frac{C}{m} \\
\end{align*}
\]

- \(m = 2 \Rightarrow \text{max BW} \Rightarrow BWXF = \sqrt{2} \)
- \(m = 3 \Rightarrow \text{minimally flat} \)
- \(m = 3 \Rightarrow \text{max flat group delay} \Rightarrow BWXF = 1.36 \)
- Shunt peaking BWXF > Series peaking BWXF
- Why not use both?
Shunt-series peaking

\[T \quad R \]
\[L_1 \quad L_2 \quad L_3 \]
\[V_{out} \]
\[V_{in} \]

* BW - delay

Tradeoff

* C_{db} & C_{l} are charged serially

in time

Shunt-double series peaking

\[T \quad R \]
\[L_1 \quad L_2 \quad L_3 \]
\[V_{out} \]
\[V_{in} \]

* L_1, L_2, L_3 can be replaced by a single Xfmr to save area

* Add bridging cap to create parallel resonance (this helps with BW too)

Bridged

T-Coil

\[\overline{C_{b}} \quad \overline{L} \quad \overline{C_{l}} \]

\[V_{in} \quad V_{out} \]
* You can show that

\[L = \frac{R^2 C}{2(1+k)} \]

\[C_B = C - \frac{(1-k)}{4(1+k)} \]

* \(k = \frac{1}{3} \) ⇒ Butterworth maj. response
* \(k = \frac{1}{2} \) ⇒ max. flat group delay
* Used in oscilloscopes for a long time
* \(W_{3dB \text{ (max)}} = 2\sqrt{2} \ W_0 \)

\(\approx 2.83 \ W_0 \)