1) Input match \(\{ \text{may require iteration} \)
2) Output match

* \(g_m \& C_{gd} \) will cause input \& output matches to depend on each other - Iteration
* Input matching is quantified by \(S_{11} \) (also called 'return loss')

\[
S_{11} = 20 \log \left| \frac{Z_{in} - R_s}{Z_{in} + R_s} \right|
\]

* Similarly, output matching is quantified by \(S_{22} \)

3) Stability: Circuit Techniques to improve stability (i.e. decrease \(C_{gd} \) \& increase \(S_{12} \))

 A) Neutralisation:

 ![Circuit Diagram]

 * \(L_f \) \& \(C_{gd} \) resonate at desired frequency
 * \(L_f \) \& \(C_{bl} \) parasitics load into node \(\text{area intensive (} L_f \text{)} \)

 B) Cascade: * reduces effect of \(C_{gd} \)
 * reduces interaction between input \& output tuned cols.
\[Z_1 = \frac{1}{g_m + g_{mb}} + \frac{Z_L}{(g_m + g_{mb}) r_0} \]

Assume \(r_0 \) is large, \(g_m \gg g_{mb} \)

\[\Rightarrow Z_1 \approx \frac{1}{g_m} \]

* Parasitic cap can cause some loss of signal and degrade NF at high freq.
* Short-channel MOS - \(r_{out} \) is finite, so may want to use \(L \geq L_{min} \).

\[\Rightarrow \text{This will increase } C_{par} \]

Cascode LNA

\[Av = \frac{V_{out}}{V_{in}} = G_m R_p \]

\[\Rightarrow [Av = 2 Q_{in} g_m R_p] \]

* Neglect \(r_{ds} \) (we will typically use a cascode)
5) Transducer Power gain G_T

$$G_T = \frac{\text{Power delivered to load}}{\text{Power available from source (max)}} = \frac{P_{\text{load}}}{P_{\text{max, source}}}$$

- $P_{\text{max, source}} = \frac{1}{2} \frac{\text{Vin}^2}{2R_s}$ \{ assume Vin, Vout etc. are peak values \}

Let $Y_L = \frac{1}{Z_L}$ \Rightarrow $G_L = \text{Re}(Y_L) = \text{Re}\left(\frac{1}{Z_L}\right)$

$$P_{\text{load}} = \frac{1}{2} |\text{Vout}|^2 \cdot G_L = \frac{1}{2} |\text{Vout}|^2 \cdot \text{Re}\left(\frac{1}{Z_L}\right)$$

$$= \frac{1}{2} \text{Re}\left(\frac{1}{Z_L}\right) \cdot |G_m (R_p || Z_L)|^2 \cdot |\text{Vin}|^2$$

$$\Rightarrow G_T = \frac{1}{2} |G_m (R_p || Z_L)|^2 \cdot \frac{R_s}{Z_L} \cdot \text{Re}\left(\frac{1}{Z_L}\right)$$

a) LNA drives off-chip component (e.g. filter)

\Rightarrow Z_L is matched to R_p in that case

$$G_T = \frac{1}{2} \cdot \frac{|G_m R_p|^2}{Z_L} \cdot \frac{R_s}{R_p} = \frac{G_m^2 R_s R_p}{4}$$
b) LNA drives mixer (or another amplifier)

Series-parallel transformation:

$$
R_L \approx Q_2^2 V_g 2
$$

$$
L \approx C_g 2
$$

$$
Q_2 = \frac{1}{\omega_0 V_g 2 C_g 2}
$$

* MOSFET with good layout ⇒ $V_g 2$ is very small

* Ideally $V_g 2 \to 0 \Rightarrow Q_2 \to \infty \Rightarrow R_L \to \infty$

* C_L is usually absorbed into C_p (output tuning network of LNA)

$$
G_T = \left(\frac{G_m \left(\frac{R_p}{R_L}\right)}{R_L}\right)^2 \frac{R_s}{R_L}
$$

$G_T \to 0$ as $R_L \to \infty$

What does this mean?

⇒ ideal MOSFET M_2 has purely capacitive gate

⇒ no real power consumed at input

⇒ $P_{load} \to 0 \Rightarrow A_T \to 0$
b) Available power gain A_p

$$A_p = \frac{\text{Power available from LNA output}}{\text{Power available from source}} = \frac{P_{\text{av,LNA}}}{P_{\text{av,s}}}$$

$P_{\text{av,LNA}}$ = power delivered to load under matched condition (same as 4ω)

$$A_p = \frac{G_m^2 \cdot R_s \cdot R_p}{4}$$

How about power dissipation?

Power-constrained noise optimisation:

* Minimise F given a specific bound on $P_{\text{av,LNA}}$.

* Fix full details, see Thomas Lee pp 380-384

From 2-port noise theory,

$$F = F_{\text{min.}} + \frac{R_n}{G_s} \left[(h_{s} - h_{\text{opt}})^2 + (B_s - B_{\text{opt}})^2 \right]$$

* Define

$$\frac{Q_{\text{opt}}}{\omega G_s} = \alpha \sqrt{\frac{5}{5Y}} = Q_{\text{opt}}.$$

$$Q_s = \frac{1}{\omega G_s R_s}$$

* Rewrite $F = F_{\text{min.}} + \left[\frac{\gamma}{2G_m R_s} \right] \left[1 - \frac{Q_{\text{opt}}^2}{Q_s^2} \right]$

* Optimum Q_{opt} turns out to be ≈ 4.5
* \[W_{opt,p} = \frac{1}{2} \frac{1}{WLCOXRS Qsp} \approx \frac{1}{3WLCOXRS} \]

* \[F_{min,p} \approx 1 + 2.4 \frac{x}{\alpha} \left[\frac{W}{W_T} \right] \]

* \[F_{min} \approx 1 + 2.3 \left[\frac{W}{W_T} \right] \]

<table>
<thead>
<tr>
<th>(W_T/W)</th>
<th>(F_{min})</th>
<th>(F_{min,p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>0.93</td>
<td>1.9</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>3.3</td>
</tr>
</tbody>
</table>

basic design procedure:

1) Determine \(W_{opt,p} \) as above

2) Choose \(I_{bias} \) based on power constraint

3) Determine \(L_s \) (with \(R_{in}, W_T \) known)

4) Calculate \(NF_{min,p} \)

5) Choose \(L_g \) for desired \(f_o \)

6) Choose \(L_D \) to maximize \(R_p \) (highly dependent on process) and \(i_o \) gain

Note: you will probably need to iterate at each step and also between steps

* Noise vs. linearity tradeoff

as \(I_{bias} \uparrow \Rightarrow (V_{as} - V_T) \uparrow \Rightarrow 11P_3 \uparrow \)

but \[\Rightarrow \alpha \] (i.e. \(g_m \)) \downarrow \Rightarrow \text{F} \uparrow \text{increased short-channel effects} \[\Rightarrow \]