Textbooks:
1) RF Microelectronics (System)
 by Behzad Razavi
 Prentice Hall of India

2) The design of CMOS Radio
 Frequency Integrated Circuits (Acta)
 by Thomas H. Lee
 Cambridge University Press

Other ref: 3) VLSI for Wireless Communication
 by Boris Leung
 Prentice Hall Electronics & VLSI Series

Course Format: 4 Projects = 40%
 1 Final Exam = 30%
 5-6 HW = 10%
 Journal Paper Seminar = 20%

* All HW & projects are due at the beginning of class (on the due date)

Pre-requisites: 1) EE 5390 - Analog IC Design (or similar)
2) Understanding of MOSFET operation
3) Understanding of basic signals & systems: Fourier Series, Fourier Transform (i.e. able to think in both time and frequency domains)
Topics covered in this course:

- RF basics, Analog & Digital modulation
- S-parameters, resonance, impedance matching
- Inductors, caps, varactors etc.
- Short-channel MOS operation
- Intro to noise & distortion
- RF Tx & Rx architectures
- LNA, mixer, VCO, PA design & operation
- RF layout

Lecture #1 - Introduction to RF

RF = Radio Frequency

- Any frequency that carries information (wired or wirelessly)

 e.g. AM-FM radio, TV, cellular, WiFi...

![Diagram of RF system](image)

RF systems ⇒
1) Transceiver architectures
2) Interaction with RFFE
RFICs → 1) Design of LNAs, Mixers etc.
2) New circuit topologies

Multi-disciplinary!

DC Design → RF Design ← Microwave theory

→ signal propagation

⇒ Transceiver arch.

CAD Tools → Comm. Theory

Comm. Theory → wireless stds.

RF Design Tradeoffs:

Noise ↔ Power

Linarity → Frequency

Supply Voltage ↔ Chaint

Note: CAD tools are indispensable! however: rely on circuit design knowledge
Why CMOS?

CMOS digital gates:
 - require very few devices per gate
 - dissipate power only while switching
 - dimensions of MOS devices can be easily scaled down
 - lower fabrication cost
 (simple mask set etc.)

CMOS for analog:
 - possibility of SoC (system-on-chip)
 - reduce cost

Disadvantages with CMOS:
 - CMOS is no longer cheap!
 + # of masks is large
 + lithography is getting very expensive
 - leakage current -> static power consumption
 - for Analog, MOSFETs were slower & noisier
 than BJTs (gap has shrunk due to scaling)

Moore's Law: # of transistors on an IC doubles every 2 years

\[\log (\text{# of MOS}) \]
Path loss:

\[\text{Power loss} \propto d^2 \text{ (theory)} \]

\[\text{Power loss} \propto d^{4.7} \text{ (empirical)} \]

Multipath Fading:

Diversity: Redundancy in Tx & Rx path

Space/Antenna div. = 2 or more antennas

Frequency div. = 2 or more carrier freq. (frequency hopping)

Time div. = data is sent more than once to overcome short-term fading