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Abstract—The coset encoding scheme for the wiretap channel
depends primarily on generating a random sequence of bits for
every code block. The secret message indexes into the set of
cosets, and a random vector selects the actual code word to
be transmitted from that coset. In the literature, it is usually
assumed that a statistically perfect uniform random generator is
available for this purpose. This study looks at practical ways of
implementing a random number generator, especially the ones
based on Linear Feedback Shift Registers. This opens up a broad
class of security issues, since it is well known that stream ciphers
based on LFSRs are vulnerable to correlation attacks and their
improved variants. This article considers the known-plaintext
attack, where the random vector used in wiretap coset encoding
is attacked under the assumption that the message is known to
the eavesdropper a priori.

I. INTRODUCTION

The wiretap channel, introduced by Wyner [1] and later
generalized by Csiszar and Korner [2], provides a framework
for studying information-theoretic security. Wiretap encoding
involves two requirements: (i) introduce redundancy so that the
code word can be correctly decoded by the legitimate receiver,
fulfilling the reliability objective. (ii) introduce randomness to
keep the eavesdropper completely ignorant even if a subset of
code bits are leaked out, which is the secrecy objective.

In practice, any source of randomness has to be physically
implementable, and is likely to be a pseudo-random number
(PRN) generator. If the eavesdropper can retrieve the seed of
the PRN generator, the randomness in the encoding is broken.
Harrison and McLaughlin [3][4] brought another dimension to
this problem when they argued that the physical layer char-
acteristics, that are often ignored in cryptographic literature,
can be studied in conjunction with Linear Feedback Shift
Register (LFSR) key stream security issues. They showed that
the security of cryptographic primitives can be strengthened
by exploiting the channel error rate in the physical layer.

In this paper, we consider Wyner’s coset encoding scheme
[1][5] for the wiretap channel, where the random vector for
choice of codeword within a coset is generated by a LFSR or
a LFSR-based stream cipher. We study fast correlation attacks
on the random vector under the known-plaintext assumption.
Our first observation is that a known-plaintext attack on coset
encoding in a binary-symmetric wiretap channel is equivalent
to a special case of the learning parity in noise (LPN) problem,
which is NP-hard, in general. We later demonstrate several

specific attacks and study their success probabilities. Based
on this study, useful parameters such as key refresh rate of
the PRN can be tuned in practical systems to ensure security.

II. THE WIRETAP CHANNEL

The general wiretap channel model is shown in Fig. 1. Two
legitimate users, Alice and Bob, are separated by a Discrete
Memoryless Channel (DMC), and an adversary Eve listens
to the transmissions through another DMC that we call the
wiretapper’s channel. The goal is for Alice to transmit such
that both the objectives of reliability across main channel and
secrecy across the wiretapper’s channel can be achieved.

Fig. 1. Wiretap channel model.

In this article, we will be concerned with the binary sym-
metric wiretap channel, which is a special case of Fig. 1 with
DMC1 being a noiseless channel and DMC2 being a binary
symmetric channel (BSC) with a certain crossover probability.

A. Coset encoding scheme

In the coset encoding scheme for a binary symmetric wire-
tap channel, a k-bit message m is mapped to one of several
possible codewords of length n. An underlying (n, n − k)
binary block code C is used in the one-to-many mapping. The
code C divides the n-dimensional vector space {0, 1}n into a
set of 2k disjoint cosets. The message m chooses a particular
coset χ. In the second step, one of the 2n−k vectors in the coset
χ is chosen at random and is transmitted. This randomness is
what provides security by enhancing equivocation.

The transmitted codeword in the coset encoding scheme can
be written as

x =
[
v m

] [
G
G∗

]
, (1)



where G is a generator matrix for the code C, G∗ is a generator
matrix for the complementary code C∗ such that C ⊕ C∗ =
{0, 1}n, and v is a (n − k)-bit random vector. Note that the

rows of
[
G
G∗

]
form a basis for {0, 1}n.

Several choices are possible for the code C and its generator
matrix. As suggested in [5], we will consider the choice
of G as a low density parity check (LDPC) matrix with a
certain degree distribution. Given a generator matrix G, we
will randomly select rows of G∗ from {0, 1}n so that they
form a full rank matrix in conjunction with G.

Since the main channel is noiseless, the legitimate receiver
retrieves the message by finding the coset of C to which the
vector x belongs. Note that Bob does not need the knowledge
of v. Supposing that the wiretapper’s channel is a BSC with
transition probability p, we can model the eavesdropper’s
received vector y as

y = mG∗ + vG+ e, (2)

where e = [e1 e2 · · · en] is a random binary vector with ei iid
and Pr{ei = 0} = 1− p, Pr{ei = 1} = p for 1 ≤ i ≤ n.

B. LFSR Based PRN Generators

We now turn our attention to the random vector v used
in the wiretap encoding process. A very popular method for
generating PRN sequences is a Linear Feedback Shift Register
(LFSR) based implementation. For increased security, output
from a number of LFSRs will be combined in a non-linear
combiner to obfuscate any discernible pattern in the output
sequence. As shown in Fig. 2, the effect of having multiple
LFSRs and combining them is modeled as a single LFSR (with
possibly a longer register length) coupled with a BSC. The

Fig. 2. LFSR Model.

transition probability of the BSC in the LFSR model of Fig.
2 is called the obfuscation probability (OP).

Security of the initial seed of the LFSR is an important
factor for the security of systems that employ LFSR-based
stream ciphers such as the one shown in Fig. 2. From now on,
we will suppose that a LFSR-based PRN generator in used for
generating the random vector v. The initial seed of the LFSR
will be assumed to be known only to Alice.

III. KNOWN-PLAINTEXT ATTACKS AND LPN

In a known-plaintext attack, we assume that the attacker
knows the message m. This is possible in several scenarios,
where Alice might be sending a preamble with universally
known data to Bob. The goal of the known-plaintext attack is
to try and determine the initial seed of the LFSR-based PRN
generator. If Eve is successful and the initial seed is found,

the random vectors in the coset encoding process of future
unknown messages are revealed to Eve. Eve can now use the
knowledge of the random vector to her advantage in attacking
later uses of the wiretap channel with unknown messages.

Therefore, there are two phases in the overall attack.

1) Known-plaintext phase: In this phase, Eve knows m and
tries to find the initial seed of the LFSR generator.

2) Unknown-plaintext phase: In this phase, Eve knows v
and tries to find the message m from mG∗ + e.

In the first phase, the initial seed of the LFSR-based PRN
generator needs to be found from

y′ = vG+ e, (3)

since m and G∗ are known to Eve.
Problems such as the one in (3) are known as the Learning

Parity in Noise (LPN) Problem [6][7][8][9]. In general, for a
randomly chosen G, LPN is known to be NP-hard through re-
duction from the maximum-likelihood decoding problem over
a BSC [10]. Recently, the LPN problem has been studied in
the context of the Hopper-Blum (HB) authentication protocol
for cheap devices such as RFID tags.

Note that both phases of the attack involve the LPN
problem. While the second phase is purely a version of the
LPN problem, the first phase is more complicated because the
goal is to not simply determine v, but find the initial seed
that generated v. However, in the coset encoding context,
the matrix G may not be chosen uniformly at random. For
instance, G might be chosen from an ensemble of sparse
LDPC codes with a certain degree distribution. In these cases,
where G is sparse, the special case of the LPN problem has
been studied in [11].

In the next section, we will briefly describe fast correlation
attacks. This attack will be later employed in the known-
plaintext phase to determine the initial LFSR seed.

IV. FAST CORRELATION ATTACKS

An LFSR of register length L generating an N bit sequence
can be modeled [12] as an (N,L) linear block code C with
generator matrix G. Each of the 2L initial seeds (or key bits)
generates a code word of length N in C. In the attacks, we
assume that the connection polynomial of the LFSR (and,
therefore, the matrix G) is known, and the initial seed is
secret. A system of LFSRs can be modeled as a single long
LFSR followed by a Binary Symmetric Channel (BSC) that
corrupts some of the output bits (see Fig. 2). Meier and
Staffelbach suggested an algorithm similar to the standard
decoding process used in error control coding [13][14] for
determining the initial seed from corrupted output bits.

In this work, we employ fast correlation attacks based on
[15]. The idea is to seek within C an embedded convolutional
code whose length is much smaller than L resulting in imple-
mentable attacks. We will briefly describe the main parameters
that control the complexity and success probability of the fast
correlation attack. For more details, see [15][16].



A. Embedding a convolutional code

We begin by observing that G is an LxN matrix and can
be written in systematic form as

G =
[
IB+1 P

0L−B−1 Q

]
, (4)

where B is the main design parameter that provides tradeoff
between processing complexity, memory requirements and
success probability. Also, IB+1 is the (B + 1) × (B + 1)
identity matrix, and 0L−B−1 is the (L − B − 1) × (B + 1)
all-zero matrix. Let [G]i,j denote the (i, j)-th entry of G

Our focus is the (L−B− 1) x (N −B− 1) matrix Q. We
seek column pairs i and j such that (1) within Q, columns i
and j are identical i.e. [G]l,i = [G]l,j for B + 2 ≤ l ≤ L, and
(2) [G]B+1,i ⊕ [G]B+1,j = 1. From such a column pair i and
j, we can generate a parity check condition satisfied by every
codeword [c1 c2 · · · cN ] ∈ C:

g1c1 + g2c2 + · · ·+ gBcB + cB+1 + ci + cj = 0, (5)

where gl = [G]l,i⊕ [G]l,j , 1 ≤ l ≤ B. Since C is generated by
an LFSR, it is cyclic implying that (5) is satisfied for every
cyclic shift of the codeword.

Suppose µ is the number of parity equations such as
(5) that we can find corresponding to distinct column pairs
(i1, j1), (i2, j2), · · · , (iµ, jµ). We can construct a rate-1/(µ+
1) convolutional code with memory B defined by an encoder
that takes as input cn at time 1 ≤ n ≤ N and outputs the
µ bits f

(0)
n = cn, f (1)

n = cn+i1−B−1 ⊕ cn+j1−B−1, · · · ,
f

(µ)
n = cn+iµ−B−1 ⊕ cn+jµ−B−1. Note that the indices in

the above equations can be taken modulo N . We remark that
the parameter B controls the feasibility and complexity of
the fast correlation attack. If B is very small, column pairs
identical in Q may not be plentiful resulting in a high-rate
convolutional code and poor success probability in decoding
corrupted bits. If B is too large, the complexity of decoding
becomes a significant obstacle.

B. Decoding

Let the corrupted LFSR sequence intercepted by the at-
tacker be [z1, z2, ...zN ]. We proceed to generate the simulated
‘received sequence’ [r(0)n r

(1)
n ... r

(m)
n ] for the embedded

rate-1/(µ + 1) convolutional code as follows: r(0)n = zn,
r
(1)
n = zn+i1−B−1 ⊕ zn+j1−B−1, · · · , r(µ)

n = zn+iµ−B−1 ⊕
zn+jµ−B−1. We use the state transition table obtained for
the convolutional encoder designed above to form the trellis
with 2B states and depth L. For the Viterbi decoding process,
the branch metric of each branch is the Hamming distance
between the received vector and the expected encoder output.

V. SIMULATION RESULTS

In this section, we will present simulation results of several
known-plaintext attacks on coset encoding over the binary
symmetric wiretap channel. The known plaintext attack is
split into two parts: (1) finding an estimate, denoted v̂, of
the random vector v from y′ = vG + e, and (2) finding the
initial LFSR seed from the estimated random vector v̂. For

(1), we will employ published methods for solving LPN, such
as [8][9][17]. For (2), we will use the fast correlation attacks
as described in Section IV.

We begin by demonstrating the fast correlation attack on an
LFSR with connection polynomial set as generator polyno-
mials of Euclidean Geometry (EG) codes. We will consider
three EG codes, denoted EG(4,2), EG(2,23) and EG(3,22),
with generator polynomials x10 + x8 + x5 + x4 + x2 + x+ 1,
x26 + x24 + x16 + x15 + x14 + x13 + x12 + x10 + x6 + x2 + 1
and x15 + x14 + x13 + x11 + x4 + x2 + 1 [18]. So, the LFSR
lengths are 10, 26 and 15, respectively. For the fast correlation,
we set the memory of the embedded convolutional code as
B = 4, 12 and 8, respectively. For the three EG codes, rate-
1/6, rate-1/40 and rate-1/240 convolutional codes were found
for embedding. The results are shown in Fig 3, where the
probability of success in finding the initial seed is plotted
against the error probability of the BSC through which the
LFSR outputs are passed.
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Fig. 3. Fast Correlation Attack on an EG LFSRs.

In Fig. 3, we see that the behavior of success probability
depends on the LFSR length and the rate of the embedded
convolutional code. The code EG(3,22) with LFSR length 15
fares poorly when compared to EG(4,2) with LFSR length 10
mainly on account of the rate-1/240 embedded convolutional
code. Also, EG(2,23) is better than EG(4,2) (at larger channel
error probabilities) because of the longer register length, in
spite of the lesser rate-1/40 embedded code. Notice that
the channel error probability can also be thought of as the
obfuscation probability in the model of Fig. 2 for stream
ciphers with multiple LFSRs.

In the next few plots, we will show results of known-
plaintext attacks on the binary symmetric wiretap channel.
We will fix a length-8 LFSR with connection polynomial
x8 + x7 + x5 + x3 + 1, and the initial seed will be 8 bits
long. The reason for choosing a low-length LFSR is to keep
all simulation parameters tractable. The model of Fig. 2 will
be used and simulations will be done for several obfuscation



probabilities (OPs).
Fig. 4 shows plots of success probability of fast correlation

attacks on v+e as a function of channel error probability with
which e was generated. In the setting used for this figure, there
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Fig. 4. Fast Correlation Attack on an LFSR sequence.

is no wiretap coset encoding. We see that the success probabil-
ity shows the expected declining behavior with channel error
probability with a flooring at 1/256 ≈ 4× 10−3, which is the
probability of success of a random guess. The parameter B
of the fast correlation attack was set as B = 4. Note that the
probability of success deteriorates with increase in obfuscation
probability.

In Fig. 5, we bring out the effect of wiretap encoding on
the fast correlation attack. The same length-8 LFSR is used
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Fig. 5. Fast Correlation Attack with wiretap coset encoding.

for generating the random vector v. Wiretap coset encoding
is performed with the matrix G set to be a (3,6) regular
LDPC matrix of dimensions 32 × 64. So, the eavesdropper

processes y′ = vG+e under the known-plaintext assumption
(as opposed to v + e for the results in Fig. 4). To estimate v
from y′, we employ the Carrijo solution [17] to LPN, where
32 columns of G are randomly chosen so as to get an invertible
submatrix Gs. Then, we set v̂ = (Gs)−1y′ assuming that e
is zero at those positions. The estimate v̂ is input to a fast
correlation attack with B = 4.

In Fig. 5, we see that the success probability quickly floors
to the random guess level in the presence of wiretap encoding.
For contrast, the dotted line shows the success probability
without wiretap encoding. The channel probability at which
the success probability reaches the random guess level is
significantly reduced from about 0.36 to about 0.04. Also, in
the presence of wiretap encoding, the obfuscation probability
appears to have very little effect on the fast correlation success
probability. A sharp threshold effect is being observed in the
wiretap encoded case - beyond a certain channel probability
(around 0.04), the success probability floors to the random
guess level. The Carrijo attack [17] is not the strongest possible
attack on the LPN problem, and that is likely to be the main
reason for the effects observed in Fig. 5.

We now consider stronger attacks such as the BKW and LF2
attacks[8][9]. Fig. 6 shows a plot of probability of success of
the BKW algorithm for three different choice of parameters.
In the figure, BKW(a,b,n) indicates that, in vG+e, the length
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Fig. 6. BKW solution for the LPN Problem.

of v is k = ab and that G is a k×n matrix. The parameters a
and b are, respectively, the block count and block size in the
notation of [8]. Each entry of G was chosen to be a uniformly
random bit. We notice that success probability becomes poorer
with an increase in k. Beyond k = 64, the BKW attack is
exceedingly complex to run, if not impossible. Typically, n
needs to be of the order of a2b for the attack to be possible.

Fig. 7 shows results of a known-plaintext attack with a mod-
ified version of the BKW algorithm. The BKW algorithm [8]
is used to find the estimate v̂ from the equation y′ = vG+e,
where G is a (3,6)-regular 21 × 42 LDPC matrix (3 1s per
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Fig. 7. Fast correlation attack with BKW preprocessor.

column, and 6 1s per row). The block count and size of BKW
were set as a = 3 and b = 7. To improve success with the
BKW algorithm, we first convert the equation y′ = vG+e to
y′′ = vG′+e′, where G′ is a 21×

(
42
2

)
matrix that contains all

pairwise XORs of the columns of G, and y′′ is a length-
(
42
2

)
vector that contains the corresponding XORs of y′. The idea,
which was used in [9], is to increase the number of output bits
used by the BKW algorithm at the cost of a marginally higher
error rate in e′. The same LFSR of length 8 with connection
polynomial x8 + x7 + x5 + x3 + 1 was used for generating
v. The estimate v̂ from the modified BKW algorithm was
subjected to a fast correlation attack with B = 4. The success
probability of finding the initial seed is plotted as a function
of channel error probability in Fig. 7 for various values of
obfuscation probabilities.

From Fig. 7, we see that the modified BKW preprocessor
is much more successful when compared to the Carrijo attack
even for high values of channel error and obfuscation prob-
abilities. In fact, the similarity of the two figures, Fig. 4 and
Fig. 7, shows that the BKW attack is largely successful in
negating the effect of the multiplication by G. However, for
larger blocklengths the BKW attack is infeasible, while the
Carrijo attack can still be launched.

In summary, we have seen that known-plaintext attacks are
successful in finding the initial key for small LFSR register
lengths and small lengths of random vector. On the basis of the
attacks, we conclude that LFSR register lengths of 8 (or lower)
combined with random vector lengths of 60 (or lesser) result in
possible known-plaintext attacks with a nonzero probability of
success. With higher computational capabilities longer register
lengths might become attackable. The refresh rate for the
initial seed that generates the random vector can be decided
based on the probability of success.

Finally, to attack the message in the unknown-plaintext
phase (see Section III), another LPN problem (finding m from
mG∗+e) still remains to be solved. The probability of success

for this second LPN will follow the plot in Fig. 6.

VI. CONCLUDING REMARKS

In this work, we studied security issues in LFSR-based
pseudo-random number generators for coset encoding for the
binary symmetric wiretap channel. The tools used for attacks
are the fast correlation attack and solutions to the learning
parity in noise (LPN) problem. For a long enough blocklength,
where strong attacks against LPN are infeasible, we show that
wiretap encoding provides significant protection against fast
correlation attacks in the known-plaintext scenario. Simula-
tion results show that, under wiretap encoding, the success
probability of combined LPN and fast correlation attacks
drops to the probability of success of a random guess beyond
a certain threshold probability of error for the wiretapper’s
channel. Therefore, beyond this threshold, key refresh rates
are controlled purely by the register length of the LFSR.
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