Assignment on Algebra for Coding Theory

EE512: Error Control Coding

Questions marked (Q) or (F) are questions from previous quizzes or final exams, respectively.

- 1. (a) Write down the addition and multiplication tables for GF(5) and GF(7).
 - (b) Write down the addition and multiplication tables for GF(4).
- 2. Construct GF(16) in three different ways by defining operations modulo the irreducible polynomials $x^4 + x + 1$, $x^4 + x^3 + 1$, and $x^4 + x^3 + x^2 + x + 1$. Find isomorphisms between the three constructions.
- 3. (a) Find all polynomials of degree 2 and degree 3 that are irreducible over (a) GF(2) and (b) GF(3). Identify the irreducible polynomials that are primitive.
 - (b) Construct GF(9) in two different ways using a primitive and a non-primitive irreducible polynomial. Identify a primitive element in each construction, and find an isomorphism between the two constructions.
- 4. (a) Find the order of each element of GF(9) and GF(16). Identify all the primitive elements.
 - (b) Repeat the same for GF(32). Under what conditions do all non-zero, non-unity elements of $GF(p^m)$ become primitive?
- 5. (a) Find the order of each element of GF(7) and GF(11). Identify all the primitive elements.
 - (b) Can all non-zero, non-unity elements of GF(p) (p: prime) be primitive for p > 3? What about p = 3?
- 6. (a) Show that all elements of $GF(2^m)$ have square roots.
 - (b) Show that all elements of $GF(p^m)$ have p-th roots.
- 7. Let x, y be non-zero elements of GF(16) (α is primitive satisfying $\alpha^4 + \alpha + 1 = 0$). Given $x + y = \alpha^{14}$ and $x^3 + y^3 = \alpha$, find x and y.
- 8. Consider GF(16) with α primitive satisfying $\alpha^4 + \alpha + 1 = 0$.
 - (a) Find all solutions to the simultaneous equations $x + y = \alpha^3$ and $x^2 + y^2 = \alpha^6$.
 - (b) Find all solutions to the simultaneous equations $x + y = \alpha^3$ and $x^2 + y^2 = \alpha$.
- 9. Let x, y, z be distinct, nonzero elements of GF(64). Find some x, y and z such that $x^3 + y^3 + z^3 = 0$. Given such x, y, z, evaluate $x^{33} + y^{33} + z^{33}$.
- 10. (a) Factor $x^5 1$ over (a) GF(16) and (b) GF(2) and (c) GF(11). In which cases do you get linear factors?
 - (b) For what primes p does $x^5 1$ factor into linear factors over GF(p)?
- 11. (a) Find the minimal polynomial of each element of GF(9) and GF(16).
 - (b) If the degree of the minimal polynomial of an element of $GF(p^m)$ equals m, is the element primitive?
- 12. (a) Consider the set $S = \{x + y\sqrt{2} : x, y \in Z\}$, where Z is the set of integers. Show that S with conventional addition and multiplication forms a commutative ring with unity. Is S an integral domain? Is S a field?
 - (b) Consider the set $S = \{x + y\sqrt{2} : x, y \in Q\}$, where Q is the set of rational numbers. Show that S with conventional addition and multiplication forms a commutative ring with unity. Is S an integral domain? Is S a field?

- (a) Consider the ring of integers Z. Describe all elements of < 4 >, the ideal generated by 4. Describe all elements of < 4, 6 >.
 - (b) Consider the ring of polynomials with real coefficients R[x]. Describe all elements of the ideals $\langle x^2 1 \rangle, \langle x^2 1, x^3 1 \rangle, \langle x^2 1, x^4 1 \rangle, \text{ and } \langle x^2 1, x^3 1, x^4 1 \rangle.$
- 14. (a) Consider the ring $Z_{18} = \{0, 1, 2, 3, \dots, 16, 17\}$ with addition and multiplication performed modulo 18. Show that Z_{18} is not an integral domain by finding zero divisors.
 - (b) Find the elements of Z_{18} that have and do not have a multiplicative inverse. Find < 2 > and < 5 > in Z_{18} . For what $a \in Z_{18}$ does $< a > = Z_{18}$?
- 15. (a) In the ring Z_{18} , find $b \neq 2$ such that $b \times 3 = 2 \times 3$.
 - (b) Consider $Z_{18}[x]$, the ring of polynomials with coefficients from Z_{18} . Find $a, b \in Z_{18}$ $(a \neq 1)$ such that 2x(x+1) = 2x(ax+b) in $Z_{18}[x]$. Is $Z_{18}[x]$ an integral domain?
- 16. (a) Consider $R_4 = GF(2)[x]/(x^4 + 1)$, the ring of polynomials with binary coefficients, with operations defined modulo $x^4 + 1$. Show that R_4 is a commutative ring with unity.
 - (b) Find all elements of $\langle x^2 + 1 \rangle$ in R_4 . Find a degree-2 polynomial $a(x) \in GF(2)[x]$ such that $x(x^2 + 1) = a(x)(x^2 + 1)$ in R_4 . Is R_4 an integral domain?
 - (c) Find all elements of $I = \langle x^2 + 1, x^3 + 1 \rangle$ in R_4 . Find $g(x) \in I$ such that $I = \langle g(x) \rangle$.
- 17. Let $\alpha \in GF(2^3)$ be primitive with $\alpha^3 = \alpha + 1$.
 - (a) Factor $f(x) = x^3 + \alpha^6 x^2 + \alpha x + \alpha^6$ over GF(2³).
 - (b) Factor $f(x) = x^3 + \alpha^6 x^2 + \alpha^5 x + 1$ over GF(2³).
- 18. Perform the following factorizations:
 - (a) $x^7 + 1$, $x^9 + 1$, $x^{11} + 1$, $x^{17} + 1$, $x^{21} + 1$, $x^{31} + 1$, $x^{51} + 1$ over GF(2).
 - (b) $x^2 + 1$, $x^4 + 1$, $x^8 + 1$, $x^{13} + 1$ over GF(3).
- 19. Find the splitting field (smallest field in which a polynomial factors into linear factors) for the following polynomials:
 - (a) $x^3 + 1$, $x^{13} + 1$, $x^{23} + 1$, $x^{33} + 1$ with coefficients from GF(2).
 - (b) $x^2 1$, $x^{11} 1$, $x^{22} 1$, $x^{31} 1$ with coefficients from GF(3).
- 20. Let $\alpha \in GF(2^6)$ be a primitive element. It is easy to see $GF(2) = \{0,1\} \subseteq GF(2^6)$. Find $GF(2^2)$ and $GF(2^3)$ in terms of α as subsets of $GF(2^6)$. Interpret isomorphism as equality for this question.