Assignment on Reed-Muller Codes

EE512: Error Control Coding

Questions marked (Q) or (F) are questions from previous quizzes or final exams, respectively.

- 1. Determine the dimension and minimum distance for Reed-Muller (RM) codes of length 16, 32, 64 and 128. Indicate the dual of each code, and point out the self-dual codes.
- 2. Fill out the following table for Reed-Muller codes.

length n								
m	2	3	4	5	6	7	8	9
distance d	dimension							
1								
2								
4								
8								
16								
32								
64								
128								
256								
512								

- 3. Find generator and parity check matrices for RM(2, 4).
- 4. Let $C_1 = \text{RM}(1,3)$ and let C_2 be the (8,1) repetition code. Find the length, dimension and minimum distance of the code C obtained by the performing the [u|u+v] construction with C_1 and C_2 . Provide a generator matrix for C.
- 5. Let $f(v_1, v_2, \ldots, v_m)$ be an arbitrary Boolean function. Show that $v_m + f(v_1, v_2, \ldots, v_m)$ takes the values 0 and 1 equally often.
- 6. Show that

 $\operatorname{RM}(r+1,m) = \{u+v : u \in \operatorname{RM}(r,m), v = 0 \text{ or a polynomial in } v_1, \ldots, v_m \text{ of degree exactly } r+1\}.$

- 7. For a code of length n, show that the number of errors that can be corrected by 1-step majority-logic decoding is at most $\frac{n-1}{2(d'-1)}$, where d' is the minimum distance of the dual code.
- 8. For a code of length n, show that the number of errors that can be corrected by L-step majoritylogic decoding is at most $\frac{n}{d'} - \frac{1}{2}$, where d' is the minimum distance of the dual code.
- 9. Prove the following: if each coordinate of a linear code has J parity checks orthogonal on it, then the minimum distance is at least J + 1.
- 10. Devise majority-logic decoders for the (7,4) Hamming code and the (15,7) double-error-correcting BCH code.
- 11. Devise a decoder for RM(r, m) that can recover up to $2^{m-r} 1$ erasures.