Andrew Thangaraj
Aug-Nov 2020
\(V\): inner product space, dim \(V=n\), \(T:V\to V\)
| Type | Property |
|---|---|
| Any | dim null \(T\) + dim range \(T = n\) |
| null \(T=\) \((\)range \(T^*)^{\perp}\) | |
| dim range \(T=\) dim range \(T^*\) | |
| Upper-triangular matrix w.r.t. orthonormal basis | |
| Invertible | dim null \(T=0\), dim range \(T=n\) |
| Diagonalizable | No special property |
| Normal | null \(T=\) null \(T^*\), range \(T=\) range \(T^*\) |
| null \(T=\) \((\)range \(T)^{\perp}\) |

(In a complex space) Self-adjoint iff \(\langle Tv,v\rangle\) is real
Normal iff \(\lVert Tv\rVert=\lVert T^*v\rVert\)
Isometry iff \(\langle Tu,Tv\rangle=\langle u,v\rangle\)