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High Level Synthesis (HLS)
• The process of converting a high-level description 

of a design to a netlist
Input:

o High-level languages (e.g., C)
o Behavioral hardware description languages (e.g., VHDL)
o Structural HDLs (e.g., VHDL)
o State diagrams / logic networks

Tools:
o Parser
o Library of modules

Constraints:
o Area constraints (e.g., # modules of a certain type)
o Delay constraints (e.g., set of operations should finish in λ

clock cycles)
Output:

o Operation scheduling (time) and binding (resource)
o Control generation and detailed interconnections
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Architectural-level synthesis motivation
• Raise input abstraction level

Reduce specification of details
Extend designer base
Self-documenting design specifications
Ease modifications and extensions

• Reduce design time
• Explore and optimize macroscopic structure:

Series/parallel execution of operations
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Synthesis

• Transform behavioral into structural view
• Architectural-level synthesis:

Architectural abstraction level
Determine macroscopic structure
Example: major building blocks

• Logic-level synthesis:
Logic abstraction level
Determine microscopic structure
Example: logic gate interconnection
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High-Level Synthesis Compilation Flow
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Example

diffeq {
read (x; y; u; dx; a);
repeat 

xl = x+dx;
ul = u –(3 . x . u . dx) – (3 . y . dx)
yl = y + u . dx ;
c = xl < a;
X = xl; u = ul; y = yl;

until  ( c )
write (y);

}
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Compilation and behavioral optimization

• Software compilation:
Compile program into intermediate form
Optimize intermediate form
Generate target code for an architecture

• Hardware compilation:
Compile programs/HDL into sequencing graph
Optimize sequencing graph
Generate gate-level interconnection for a cell 
library
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Behavioral-level optimization

• Semantic-preserving transformations aiming 
at simplifying the model

• Applied to parse-trees or during their 
generation

• Taxonomy:
Data-flow based transformations
Control-flow based transformations
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Architectural synthesis and optimization
• Synthesize macroscopic structure in terms of 

building-blocks
• Explore area/performance trade-off:

maximize performance of implementations subject to 
area constraints
minimize area implementations subject to performance 
constraints

• Determine an optimal implementation
• Create logic model for data-path and control
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Design space and objectives
• Design space:

Set of all feasible implementations

• Implementation parameters:
Area
Performance:

o Cycle-time
o Latency
o Throughput (for pipelined implementations)

Power consumption
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Design evaluation space
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Dependency Graph (Sequencing Graph)

diffeq {
read (x; y; u; dx; a);
repeat 

xl = x+dx;
ul = u –(3 . x . u . dx) – (3 . y . dx)
yl = y + u . dx ;
c = xl < a;
X = xl; u = ul; y = yl;

until  ( c )
write (y);

}
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Hardware modeling

• Circuit behavior:
Sequencing graphs

• Building blocks:
Resources

• Constraints:
Timing and resource usage
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Resources
• Functional resources:

Perform operations on data
Example: arithmetic and logic blocks

• Storage resources:
Store data
Example: memory and registers

• Interface resources:
Example: busses and ports
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Resources and circuit families

• Resource-dominated circuits.
Area and performance depend on few, well-
characterized blocks
The most common in DSP Circuits

• Non resource-dominated circuits
Area and performance are strongly influenced by 
sparse logic, control and wiring
Example: some ASIC circuits
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Implementation constraints
• Timing constraints:

Cycle-time
Latency of a set of operations
Time spacing between operation pairs

• Resource constraints:
Resource usage (or allocation)
Partial binding
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Sequence Graph
• Remove all nodes 

corresponding to 
constants (with respect to 
the loop)

• Remove edges from 
those constants as well 

• Remove nodes that are 
being written in the loop 
and the corresponding 
edges

• Add NOP nodes at both 
ends to represent reads 
and writes of the loop

• Such a graph is much 
simpler to operate on
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Synthesis in the temporal domain

• Scheduling:
Associate a start-time with each operation
Determine latency and parallelism of the 
implementation
The schedule is called φ

• Scheduled sequencing graph:
Sequencing graph with start-time annotation
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Synthesis in Temporal Domain

• Schedule:
Mapping of operations to time slots (cycles)
A scheduled sequencing graph is a labeled graph
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Operation Types
• For each operation, define its type.
• For each resource, define a resource type,

and a delay (in terms of # cycles)
• T is a relation that maps an operation to a 

resource type that can implement it
T : V {1, 2, ..., nres}.

• More general case:
A resource type may implement more than one 
operation type (e.g., ALU)

• Resource binding:
Map each operation to a resource with the same type
Might have multiple options
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Synthesis in the spatial domain
• Binding: 

Associate a resource with each operation with the 
same type
Determine the area of the implementation

• Sharing:
Bind a resource to more than one operation
Operations must not execute concurrently

• Bound sequencing graph:
Sequencing graph with resource annotation
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Schedule in Spatial Domain
• Resource sharing

More than one operation bound to same resource
Operations have to be serialized
Can be represented using hyperedges (define vertex 
partition)
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Binding Should Change with Schedules
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Scheduling and Binding

Resource dominated

Control dominated

• Resource constraints:
Number of resource instances of each type
{ak : k=1, 2, ..., nres}.

• Scheduling:
Labeled vertices φ (v3)=1.

• Binding:
Hyperedges (or vertex partitions) β (v2)=adder1.

• Cost:
Number of resources ≈ area
Registers, steering logic (Muxes, busses), wiring, 
control unit

• Delay:
Start time of the “sink” node
Might be affected by steering logic and schedule 
(control logic) – resource-dominated vs. ctrl-dominated
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Architectural Optimization
• Optimization in view of design space flexibility
• A multi-criteria optimization problem:

Determine schedule φ and binding β.
Under area Α, latency λ and cycle time τ objectives

• Find non-dominated points in solution space
• Solution space tradeoff curves:

Non-linear, discontinuous
Area / latency / cycle time (more?)
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Area/latency trade-off

1 2 3 4 5 6 7 8

5

10

15

7
8

12
13

(3,2)

(2,1)

(3,1)

Area

Latency

20

18
17

30

40

(2,2)
(2,1)

(1,2)

(1,1)

Cycle-tim
e

X



28

Scheduling and Binding
• Cost λ and Α determined by both φ and β.

Also affected by floorplan and detailed routing

• β affected by φ:
Resources cannot be shared among concurrent ops

• φ affected by β:
Resources cannot be shared among concurrent ops
When register and steering logic delays added to 
execution delays, might violate cycle time.

• Order?
Apply either one (scheduling, binding) first
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How Is the Datapath Implemented?
• In the following schedule and binding, every 

operation has two inputs. If an input is not 
shown explicitly, it comes from a unique register
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Operation Scheduling
• Input:

Sequencing graph G(V, E), with n vertices
Cycle time τ.
Operation delays D = {di: i=0..n}.

• Output:
Schedule φ determines start time ti of operation vi.
Latency λ = tn – t0.

• Goal: determine area / latency tradeoff
• Classes:

Non-hierarchical and unconstrained
Latency constrained
Resource constrained
Hierarchical
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Min Latency Unconstrained Scheduling
• Simplest case: no constraints, find min latency
• Given set of vertices V, delays D and a partial 

order > on operations E, find an integer labeling 
of operations   φ: V Z+ Such that:

ti = φ(vi).
ti ≥ tj + dj ∀ (vj, vi) ∈ E.
λ = tn – t0 is minimum.

• Solvable in polynomial time
• Bounds on latency for resource constrained 

problems
• ASAP algorithm used: topological order
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ASAP Schedules
Schedule v0 at t0=0.
While (vn not scheduled)

o Select vi with all scheduled predecessors
o Schedule vi at ti = max {tj+dj}, vj being a predecessor of vi.

Return tn.
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ALAP Schedules
Schedule vn at tn=λ.
While (v0 not scheduled)

o Select vi with all scheduled successors
o Schedule vi at ti = min {tj-dj}, vj being a succecessor of vi.
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Remarks
• ALAP solves a latency-constrained problem
• Latency bound can be set to latency computed by 

ASAP algorithm
• Mobility:

Defined for each operation
Difference  between ALAP and ASAP schedule

• Slack on the start time
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Example

• Operations with zero mobility:
{ v1, v2, v3, v4, v5 }
Critical path

• Operations with mobility one:  { v6, v7 }
• Operations with mobility two:  { v8, v9, v10, v11 }
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Scheduling under Relative Timing constraints
• Motivation:

Deadlines and Release times are absolute
Also makes sense to have relative constraints
o Eg: Memory fetch must be done within 6 cycles and takes a 

minimum of 2 cycles

• Constraints:
Upper/lower bounds on start-time difference of any 
operation pair
A minimum timing constraint lij ≥ 0 for specified i,j
pairs
A maximum timing constraint uij ≥ 0 for specified i,j
pairs

• Feasibility of a solution
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Constraint graph model
• Start from sequencing graph

Model delays as weights on edges

• Add forward edges for minimum constraints:
Edge ( vi , vj ) with weight lij → tj ≥ ti + lij

• Add backward edges for maximum constraints:
That is, for constraint from vi to vj
add backward edge ( vj , vi ) with weight: -uij

o because tj ≤ ti + uij→ ti ≥ tj - uij
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Example
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Resource Constraint Scheduling
• Constrained scheduling

General case NP-complete
Minimize latency given constraints on area or
the resources (ML-RCS)
Minimize resources subject to bound on latency (MR-
LCS)

• Exact solution methods
ILP: Integer Linear Programming
Hu’s heuristic algorithm for identical processors

• Heuristics
List scheduling
Force-directed scheduling
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• Use binary decision variables
i = 0, 1, ..., n
l = 1, 2, ..., λ’+1 λ’ given upper-bound on latency 
xil = 1 if operation i starts at step l, 0 otherwise.

• Set of linear inequalities (constraints),
and an objective function (min latency)

• Observations

ti = start time of op i.

is op vi (still) executing at step l?

ILP Formulation of ML-RCS
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Constraints
• Operations start only once

Σ xil = 1 i = 1, 2,…, n

• Sequencing relations must be satisfied
ti ≥ tj + dj ti - tj - dj ≥ 0 for all (vj, vi) є E

• Resource bounds must be satisfied
Simple case (unit delay)
Σ l xil ≤ ak k = 1,2,…nres ;   for all l

• Equation 2 can be rewritten as 
Σ l • xil – Σ l • xjl – dj ≥ 0 for all (vj, vi) є E

i:T(vi)=k
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Start Time vs. Execution Time
• For each operation vi , only one start time
• If di=1, then the following questions are the 

same:
Does operation vi start at step l?
Is operation vi running at step l?

• But if di>1, then the two questions should be 
formulated as:

Does operation vi start at step l?
o Does xil = 1 hold?

Is operation vi running at step l?
o Does the following hold?
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Operation vi Still Running at Step l ?
• Is v9 running at step 6?

Is     x9,6 + x9,5 + x9,4 = 1 ?

• Note:
Only one (if any) of the above three cases can happen
To meet resource constraints, we have to ask the 
same question for ALL steps, and ALL operations of 
that type
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Operation vi Still Running at Step l ?
• Is vi running at step l ?

Is     xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi
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• Constraints:
Unique start times:

Sequencing (dependency) relations must be satisfied

Resource constraints

• Objective: min cTt.
t =start times vector, c =cost weight (e.g., [0 0 ... 1])
When c =[0 0 ... 1], cTt =

ILP Formulation of ML-RCS (cont.)
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ILP Example
• Assume λ = 4
• First, perform ASAP and ALAP

(we can write the ILP without ASAP and ALAP, but 
using ASAP and ALAP will simplify the inequalities)
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ILP Example: Unique Start Times Constraint
• Without using ASAP and 

ALAP values:
• Using ASAP and ALAP:
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ILP Example: Dependency Constraints
• Using ASAP and ALAP, the non-trivial inequalities 

are: (assuming unit delay for + and *)
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ILP Example: Resource Constraints
• Resource constraints (assuming 2 adders and 2 

multipliers)

• Objective:
Since λ=4 and sink has no mobility, any feasible 
solution is optimum, but we can use the following 
anyway:
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Example
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ILP Formulation of MR-LCS
• Dual problem to ML-RCS
• Objective:

Goal is to optimize total resource usage, a.
Objective function is   cTa , where entries in  c 
are respective area costs of resources

• Constraints:
Same as ML-RCS constraints, plus:
Latency constraint added:

Note: unknown  ak appears in constraints.
• Resource usage is unknown in the constraints
• Resource usage is the objective to minimize

1. +≤∑ λnl
l
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ILP Solution
• Use standard ILP packages
• Transform into LP problem 
• Advantages:

Exact method
Others constraints can be incorporated

• Disadvantages:
Works well only up to few thousand variables
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Hu’s Algorithm
• Simple case of the scheduling problem

Operations of unit delay
Operations (and resources) of the same type

• Hu’s algorithm
Greedy
Polynomial AND optimal
Computes lower bound on number of resources for a 
given latency
OR: computes lower bound on latency subject to 
resource constraints

• Basic idea:
Label operations based on their distances from the sink
Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)
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Hu’s algorithm
• Assumptions:

Graph is a forest
All operations have unit delay
All operations have the same type

• Algorithm:
Greedy strategy
Exact solution
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Example

• Assumptions:
One resource type only
All operations have unit delay

• Labels:
Distance to sink
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Hu’s Algorithm
HU (G(V,E), a) {

Label the vertices // label = length of longest path
passing through the vertex

l = 1
repeat {

U = unscheduled vertices in V whose
predecessors have been scheduled
(or have no predecessors)

Select S ⊆ U such that  |S| ≤ a  and labels in S
are maximal

Schedule the S operations at step l by setting
ti=l, i: vi ∈ S.

l = l + 1
} until vn is scheduled.

}
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3 11

Example
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Hu’s Algorithm: Example (a=3)
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List Scheduling
• Greedy algorithm for ML-RCS and MR-LCS

Does NOT guarantee optimum solution

• Similar to Hu’s algorithm
Operation selection decided by criticality
O(n) time complexity

• More general input
Resource constraints on different resource types
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List Scheduling Algorithm: ML-RCS

LIST_L (G(V,E), a) {
l = 1
repeat {

for each resource type k {
Ul,k = available vertices in V.
Tl,k = operations in progress.

Select Sk ⊆ Ul,k such that  |Sk| + |Tl,k| ≤ ak
Schedule the Sk operations at step l

}
l = l + 1

} until vn is scheduled.
}
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Example
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List Scheduling Algorithm: MR-LCS
LIST_R (G(V,E), λ’) {

a = 1,  l = 1
Compute the ALAP times tL.
if t0

L < 0
return (not feasible)

repeat {
for each resource type k {

Ul,k = available vertices in V.
Compute the slacks { si = ti

L - l, ∀ vi∈ Ul,k }.
Schedule operations with zero slack, update a
Schedule additional Sk ⊆ Ul,k under a constraints

}
l = l + 1

} until vn is scheduled.
}
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Example
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Unit-delay resources
Maximum latency = 4
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a2 = 1 ALUs
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Summary
• Scheduling algorithms are used by tools

Compilers use them when you write code for DSP 
processors
Tools like Xilinx ISE, Synopsys DC etc. use them when 
you compiler HDL models

• Good understanding of “under the hood”
operations of tools is useful

• The constraint solving techniques can be used 
directly for your custom designs

Eg: In DSP software, if you know the resources, you 
write assembly code to minimize latency
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Force-Directed Scheduling
• Similar to list scheduling

Can handle ML-RCS and MR-LCS
For ML-RCS, schedules step-by-step
BUT, selection of the operations tries to find the 
globally best set of operations

• Idea:
Find the mobility μi = ti

L – ti
S of operations

Look at the operation type probability distributions
Try to flatten the operation type distributions

• Definition: operation probability density
pi ( l ) = Pr { vi starts at step l }.
Assume uniform distribution:
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Force-Directed Scheduling: Definitions
• Operation-type distribution (NOT normalized to 1)

• Operation probabilities over control steps:

• Distribution graph of type k over all steps:

qk ( l ) can be thought of as expected operator cost
for implementing operations of type k at step l.
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Example
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Force-Directed Scheduling Algorithm: Idea
• Very similar to LIST_L(G(V,E), a)

Compute mobility of operations using  ASAP and ALAP
Computer operation probabilities and type distributions
Select and schedule operations
Update operation probabilities and type distributions
Go to next control step

• Difference with list sched in selecting operations
Select operations with least force
Consider the effect on the type distribution
Consider the effect on successor nodes and their type 
distributions


