High Level Synthesis

Shankar Balachandran Assistant Professor, Dept. of CSE IIT Madras shankar@cse.iitm.ac.in

1

References and Copyright

- Textbooks referred (none required)
 - [Mic94] G. De Micheli
 "Synthesis and Optimization of Digital Circuits" McGraw-Hill, 1994.

• Slides used:

- Giovanni de Micheli's Slides on Synthesis
- Kia Bazargan's Material on High Level Synthesis
- [©Gupta] © Rajesh Gupta UC-Irvine http://www.ics.uci.edu/~rgupta/ics280.html

High Level Synthesis (HLS)

- The process of converting a high-level description of a design to a netlist
 - Input:
 - o High-level languages (e.g., C)
 - Behavioral hardware description languages (e.g., VHDL)
 - o Structural HDLs (e.g., VHDL)
 - o State diagrams / logic networks
 - Tools:
 - o Parser
 - o Library of modules
 - Constraints:
 - Area constraints (e.g., # modules of a certain type)
 - o Delay constraints (e.g., set of operations should finish in λ clock cycles)
 - Output:
 - Operation scheduling (time) and binding (resource)
 - o Control generation and detailed interconnections

Architectural-level synthesis motivation

- Raise input abstraction level
 - Reduce specification of details
 - Extend designer base
 - Self-documenting design specifications
 - Ease modifications and extensions
- Reduce design time
- Explore and optimize macroscopic structure:
 - Series/parallel execution of operations

Synthesis

- Transform behavioral into structural view
- Architectural-level synthesis:
 - Architectural abstraction level
 - Determine *macroscopic* structure
 - Example: major building blocks
- Logic-level synthesis:
 - Logic abstraction level
 - Determine *microscopic* structure
 - Example: logic gate interconnection

High-Level Synthesis Compilation Flow

Example

```
diffeq {
    read (x; y; u; dx; a);
    repeat
        xl = x+dx;
        ul = u -(3 · x · u · dx) - (3 · y · dx)
        yl = y + u · dx ;
        c = xl < a;
        X = xl; u = ul; y = yl;
    until (c)
    write (y);
}</pre>
```

Compilation and behavioral optimization

- Software compilation:
 - Compile program into intermediate form
 - Optimize intermediate form
 - Generate target code for an architecture
- Hardware compilation:
 - Compile programs/HDL into sequencing graph
 - Optimize sequencing graph
 - Generate gate-level interconnection for a cell library

Behavioral-level optimization

- Semantic-preserving transformations aiming at simplifying the model
- Applied to parse-trees or during their generation
- Taxonomy:
 - Data-flow based transformations
 - Control-flow based transformations

Architectural synthesis and optimization

- Synthesize macroscopic structure in terms of building-blocks
- Explore area/performance trade-off:
 - *maximize performance* of implementations subject to area constraints
 - *minimize area implementations* subject to *performance* constraints
- Determine an optimal implementation
- Create logic model for data-path and control

Design space and objectives

- Design space:
 - Set of all feasible implementations
- Implementation parameters:
 - Area
 - Performance:
 - o Cycle-time
 - o Latency
 - o Throughput (for pipelined implementations)
 - Power consumption

Design evaluation space

Dependency Graph (Sequencing Graph)

```
diffeq {
    read (x; y; u; dx; a);
    repeat
        xl = x+dx;
        ul = u -(3 · x · u · dx) - (3 · y · dx)
        yl = y + u · dx;
        c = xl < a;
        X = xl; u = ul; y = yl;
    until (c)
    write (y);
}</pre>
```


Hardware modeling

- Circuit behavior:
 - Sequencing graphs
- Building blocks:
 - Resources
- Constraints:
 - Timing and resource usage

Resources

- Functional resources:
 - Perform operations on data
 - Example: arithmetic and logic blocks
- Storage resources:
 - Store data
 - Example: memory and registers
- Interface resources:
 - Example: busses and ports

Resources and circuit families

- *Resource-dominated* circuits.
 - Area and performance depend on few, wellcharacterized blocks
 - The most common in DSP Circuits
- Non resource-dominated circuits
 - Area and performance are strongly influenced by sparse logic, control and wiring
 - Example: some ASIC circuits

Implementation constraints

- Timing constraints:
 - Cycle-time
 - Latency of a set of operations
 - Time spacing between operation pairs
- Resource constraints:
 - Resource usage (or allocation)
 - Partial binding

Sequence Graph

- Remove all nodes corresponding to constants (with respect to the loop)
- Remove edges from those constants as well
- Remove nodes that are being written in the loop and the corresponding edges
- Add NOP nodes at both ends to represent reads and writes of the loop
- Such a graph is much simpler to operate on

Synthesis in the temporal domain

• Scheduling:

- Associate a start-time with each operation
- Determine latency and parallelism of the implementation
- The schedule is called ϕ
- Scheduled sequencing graph:
 - Sequencing graph with start-time annotation

Synthesis in Temporal Domain

- Schedule:
 - Mapping of operations to time slots (cycles)
 - A scheduled sequencing graph is a labeled graph

Operation Types

- For each operation, define its *type*.
- For each resource, define a resource type, and a delay (in terms of # cycles)
- T is a relation that maps an operation to a resource type that can implement it
 - $T: V \rightarrow \{1, 2, ..., n_{res}\}$.
- More general case:
 - A resource type may implement more than one operation type (e.g., ALU)
- Resource binding:
 - Map each operation to a resource with the same type
 - Might have multiple options

Synthesis in the spatial domain

- Binding:
 - Associate a resource with each operation with the same type
 - Determine the area of the implementation
- Sharing:
 - Bind a resource to more than one operation
 - Operations must not execute concurrently
- Bound sequencing graph:
 - Sequencing graph with resource annotation

Schedule in Spatial Domain

- Resource sharing
 - More than one operation bound to same resource
 - Operations have to be serialized
 - Can be represented using hyperedges (define vertex partition)

Binding Should Change with Schedules

Scheduling and Binding

- Resource constraints:
 - Number of resource instances of each type {a_k: k=1, 2, ..., n_{res}}.
- Scheduling:
 - Labeled vertices $\phi(v_3)=1$.
- Binding:
 - Hyperedges (or vertex partitions) $\beta(v_2) = adder1$.
- Cost:
 - Number of resources ≈ area
 - Registers, steering logic (Muxes, busses), wiring, control unit
- Delay:
 - Start time of the "sink" node
 - Might be affected by steering logic and schedule (control logic) – resource-dominated vs. ctrl-dominated

Architectural Optimization

- Optimization in view of design space flexibility
- A multi-criteria optimization problem:
 - Determine schedule ϕ and binding β .
 - Under area A, latency λ and cycle time τ objectives
- Find non-dominated points in solution space
- Solution space tradeoff curves:
 - Non-linear, discontinuous
 - Area / latency / cycle time (more?)

Area/latency trade-off

Scheduling and Binding

- Cost λ and A determined by both ϕ and β .
 - Also affected by floorplan and detailed routing
- β affected by ϕ :
 - Resources cannot be shared among concurrent ops
- ϕ affected by β :
 - Resources cannot be shared among concurrent ops
 - When register and steering logic delays added to execution delays, might violate cycle time.
- Order?
 - Apply either one (scheduling, binding) first

How Is the Datapath Implemented?

• In the following schedule and binding, every operation has two inputs. If an input is not shown explicitly, it comes from a unique register

Operation Scheduling

- Input:
 - Sequencing graph G(V, E), with n vertices
 - Cycle time τ.
 - Operation delays $D = \{d_i: i=0..n\}$.
- Output:
 - Schedule ϕ determines start time t_i of operation v_i .
 - Latency $\lambda = t_n t_0$.
- Goal: determine area / latency tradeoff
- Classes:
 - Non-hierarchical and unconstrained
 - Latency constrained
 - Resource constrained
 - Hierarchical

Min Latency Unconstrained Scheduling

- Simplest case: no constraints, find min latency
- Given set of vertices V, delays D and a partial order > on operations E, find an integer labeling of operations $\phi: V \rightarrow Z^+$ Such that:

•
$$t_i = \phi(v_i)$$
.

•
$$t_i \ge t_j + d_j$$
 $\forall (v_j, v_i) \in E.$

- $\lambda = t_n t_0$ is minimum.
- Solvable in polynomial time
- Bounds on latency for resource constrained problems
- ASAP algorithm used: topological order

ASAP Schedules

- Schedule v₀ at t₀=0.
- While (v_n not scheduled)
 - o Select v_i with all scheduled predecessors
 - Schedule v_i at $t_i = \max \{t_i + d_j\}, v_j$ being a predecessor of v_i .
- Return t_n.

ALAP Schedules

- Schedule v_n at $t_n = \lambda$.
- While (v₀ not scheduled)
 - ${\color{black}{o}}$ Select v_i with all scheduled successors
 - Schedule v_i at $t_i = \min \{t_j d_j\}, v_j$ being a succeessor of v_i .

Remarks

- ALAP solves a latency-constrained problem
- Latency bound can be set to latency computed by ASAP algorithm
- Mobility:
 - Defined for each operation
 - Difference between ALAP and ASAP schedule
- Slack on the start time

Example

- Operations with zero mobility:
 - $\{ V_{1}, V_{2}, V_{3}, V_{4}, V_{5} \}$
 - Critical path
- Operations with mobility one: $\{ V_{6r} V_7 \}$
- Operations with mobility two: $\{ V_{8r} V_{9r} V_{10r} V_{11} \}$

Scheduling under Relative Timing constraints

- Motivation:
 - Deadlines and Release times are absolute
 - Also makes sense to have relative constraints
 - Eg: Memory fetch must be done within 6 cycles and takes a minimum of 2 cycles
- Constraints:
 - Upper/lower bounds on start-time difference of any operation pair
 - A minimum timing constraint $I_{ij} \ge 0$ for specified i,j pairs
 - A maximum timing constraint $u_{ij} \ge 0$ for specified i,j pairs
- Feasibility of a solution

Constraint graph model

- Start from sequencing graph
 - Model delays as weights on edges
- Add forward edges for *minimum* constraints:
 - Edge $(V_{i'}, V_{j'})$ with weight $I_{ij} \rightarrow t_j \ge t_i + I_{ij}$
- Add backward edges for maximum constraints:
 - That is, for constraint from v_i to v_j add backward edge (v_j, v_i) with weight: -u_{ij} o because t_j ≤ t_i + u_{ij} → t_i ≥ t_j - u_{ij}

Example

- 1. Ensure that there are no positive cycles in the graph
- 2. Find longest paths in the graph between 2 nodes *i* and *j* and use as delay separations

Vertex	Start time
v ₀	1
v ₁	1
v ₂	3
V ₃	1
V ₄	5
v _n	6

Resource Constraint Scheduling

- Constrained scheduling
 - General case NP-complete
 - Minimize latency given constraints on area or the resources (ML-RCS)
 - Minimize resources subject to bound on latency (MR-LCS)
- Exact solution methods
 - ILP: Integer Linear Programming
 - Hu's heuristic algorithm for identical processors
- Heuristics
 - List scheduling
 - Force-directed scheduling

ILP Formulation of ML-RCS

• Use binary decision variables

•
$$i = 0, 1, ..., n$$

- $l = 1, 2, ..., \lambda' + 1$ λ' given upper-bound on latency
- $x_{il} = 1$ if operation *i* starts at step *l*, 0 otherwise.
- Set of linear inequalities (constraints), and an objective function (min latency)
- Observations

•
$$x_{il} = 0$$
 for $l < t_i^S$ and $l > t_i^L$
 $(t_i^S = ASAP(v_i), t_i^L = ALAP(v_i))$
• $t_i = \sum_{l} l \cdot x_{il}$ $t_i = \text{start time of op } i.$
• $\sum_{m=l-d_i+1}^{l} x_{im} \stackrel{?}{=} 1 \implies \text{is op } v_i \text{ (still) executing at step } l?$
[Mic94] p.198

Constraints

Operations start only once

 $\Sigma x_{ii} = 1$ i = 1, 2, ..., n

- Sequencing relations must be satisfied $t_i \ge t_j + d_j \rightarrow t_i - t_j - d_j \ge 0$ for all $(v_{j'}, v_j) \in E$
- Resource bounds must be satisfied Simple case (unit delay)

 $\sum_{i:T(v_i)=k} x_{il} \le a_k \quad k = 1, 2, \dots, n_{res}; \text{ for all } I$

• Equation 2 can be rewritten as $\Sigma / \cdot x_{jl} - \Sigma / \cdot x_{jl} - d_j \ge 0$ for all $(v_{jr}, v_j) \in E$

Start Time vs. Execution Time

- For each operation v_i , only one start time
- If $d_i = 1$, then the following questions are the same:
 - Does operation v_i start at step l?
 - Is operation v_i running at step l?
- But if $d_i > 1$, then the two questions should be formulated as:
 - Does operation v_i start at step l?
 o Does x_{il} = 1 hold?
 - Is operation v_i running at step l?
 - o Does the following hold?

$$\sum_{m=l-d_i+1}^l x_{im} \stackrel{?}{=} 1$$

Operation v_i Still Running at Step l?

• Is v₉ running at step 6?

• Is
$$x_{9,6} + x_{9,5} + x_{9,4} = 1$$
 ?

• Note:

- Only one (if any) of the above three cases can happen
- To meet resource constraints, we have to ask the same question for ALL steps, and ALL operations of that type

Operation v_i Still Running at Step l?

• Is v_i running at step l?

• Is
$$x_{i,l} + x_{i,l-1} + \dots + x_{i,l-di+1} = 1$$
 ?

ILP Formulation of ML-RCS (cont.)

- Constraints:
 - Unique start times:

$$\sum_{l} x_{il} = 1, \quad i = 0, 1, \dots, n$$

Sequencing (dependency) relations must be satisfied

$$t_i \ge t_j + d_j \ \forall (v_j, v_i) \in E \Longrightarrow \sum_l l \cdot x_{il} \ge \sum_l l \cdot x_{jl} + d_j$$

Resource constraints

$$\sum_{i:T(v_i)=k} \sum_{m=l-d_i+1}^{l} x_{im} \le a_k, \quad k = 1, ..., n_{res}, \quad l = 1, ..., \overline{\lambda} + 1$$

- Objective: min $c^T t$.
 - t = start times vector, c = cost weight (e.g., [0 0 ... 1])• When $c = [0 0 ... 1], c^T t = \sum l . x_{nl}$

ILP Example

- Assume $\overline{\lambda} = 4$
- First, perform ASAP and ALAP
 - (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will simplify the inequalities)

ILP Example: Unique Start Times Constraint

• Without using ASAP and ALAP values:

 $\begin{aligned} x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} &= 1 \\ x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} &= 1 \\ \cdots \\ \cdots \\ \cdots \end{aligned}$

• • •

 $x_{11,1} + x_{11,2} + x_{11,3} + x_{11,4} = 1$

• Using ASAP and ALAP:

ILP Example: Dependency Constraints

 Using ASAP and ALAP, the non-trivial inequalities are: (assuming unit delay for + and *)

$$2 \cdot x_{7,2} + 3 \cdot x_{7,3} - x_{6,1} - 2 \cdot x_{6,2} - 1 \ge 0$$

$$2 \cdot x_{9,2} + 3 \cdot x_{9,3} + 4 \cdot x_{9,4} - x_{8,1} - 2 \cdot x_{8,2} - 3 \cdot x_{8,3} - 1 \ge 0$$

$$2 \cdot x_{11,2} + 3 \cdot x_{11,3} + 4 \cdot x_{11,4} - x_{10,1} - 2 \cdot x_{10,2} - 3 \cdot x_{10,3} - 1 \ge 0$$

$$4 \cdot x_{5,4} - 2 \cdot x_{7,2} - 3 \cdot x_{7,3} - 1 \ge 0$$

$$4 \cdot x_{5,4} - 2 \cdot x_{7,2} - 3 \cdot x_{7,3} - 1 \ge 0$$

$$5 \cdot x_{n,5} - 2 \cdot x_{9,2} - 3 \cdot x_{9,3} - 4 \cdot x_{9,4} - 1 \ge 0$$

ILP Example: Resource Constraints

- Resource constraints (assuming 2 adders and 2 multipliers) $x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$
 - $x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \le 2$
 - $x_{7,3} + x_{8,3} \le 2$
 - $x_{10,1} \leq 2$
 - $x_{9,2} + x_{10,2} + x_{11,2} \le 2$

 $x_{54} + x_{94} + x_{114} \le 2$

 $x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \le 2$

- Objective:
 - Since $\lambda = 4$ and sink has no mobility, any feasible solution is optimum, but we can use the following anyway: $Min \quad x_{n,1} + 2.x_{n,2} + 3.x_{n,3} + 4.x_{n,4}$

ILP Formulation of MR-LCS

- Dual problem to ML-RCS
- Objective:
 - Goal is to optimize total resource usage, a.
 - Objective function is c^Ta , where entries in c are respective area costs of resources
- Constraints:
 - Same as ML-RCS constraints, plus:
 - Latency constraint added:

$$\sum_{l} l \cdot x_{nl} \leq \overline{\lambda} + 1$$

- Note: unknown ak appears in constraints.
- Resource usage is unknown in the constraints
- Resource usage is the objective to minimize

ILP Solution

- Use standard ILP packages
- Transform into LP problem
- Advantages:
 - Exact method
 - Others constraints can be incorporated
- Disadvantages:
 - Works well only up to few thousand variables

Hu's Algorithm

- Simple case of the scheduling problem
 - Operations of unit delay
 - Operations (and resources) of the same type
- Hu's algorithm
 - Greedy
 - Polynomial AND optimal
 - Computes lower bound on number of resources for a given latency
 OR: computes lower bound on latency subject to resource constraints
- Basic idea:
 - Label operations based on their distances from the sink
 - Try to schedule nodes with higher labels first (i.e., most "critical" operations have priority)

Hu's algorithm

- Assumptions:
 - Graph is a forest
 - All operations have unit delay
 - All operations have the same type
- Algorithm:
 - Greedy strategy
 - Exact solution

Example

Distance to sink

```
HU (G(V,E), a) {
    Label the vertices // label = length of longest path
                           passing through the vertex
    l = 1
    repeat {
          U = unscheduled vertices in V whose
              predecessors have been scheduled
               (or have no predecessors)
          Select S \subset U such that |S| \leq a and labels in S
             are maximal
          Schedule the S operations at step l by setting
            t_i = l, i: v_i \in S.
          l = l + 1
   } until v_n is scheduled.
```

Example

Hu's Algorithm: Example (a=3)

List Scheduling

- Greedy algorithm for ML-RCS and MR-LCS
 - Does NOT guarantee optimum solution
- Similar to Hu's algorithm
 - Operation selection decided by criticality
 - O(n) time complexity
- More general input
 - Resource constraints on different resource types

List Scheduling Algorithm: ML-RCS

```
LIST_L (G(V,E), a) {
    l = 1
    repeat {
          for each resource type k {
                 U_{lk} = available vertices in V.
                 T_{lk} = operations in progress.
                 Select S_k \subseteq U_{l,k} such that |S_k| + |T_{l,k}| \le a_k
                 Schedule the S_k operations at step l
           }
           l = l + 1
    } until v_n is scheduled.
}
```

Example

List Scheduling Algorithm: MR-LCS

```
LIST_R (G(V,E), \lambda') {
    a = 1, l = 1
    Compute the ALAP times t^L.
    if t_0^{L} < 0
         return (not feasible)
    repeat {
         for each resource type k {
              U_{lk} = available vertices in V.
              Compute the slacks { s_i = t_i^L - l, \forall v_i \in U_{l,k} }.
              Schedule operations with zero slack, update a
              Schedule additional S_k \subseteq U_{l,k} under a constraints
         }
         l = l + 1
    } until v_n is scheduled.
```

Example

Summary

- Scheduling algorithms are used by tools
 - Compilers use them when you write code for DSP processors
 - Tools like Xilinx ISE, Synopsys DC etc. use them when you compiler HDL models
- Good understanding of "under the hood" operations of tools is useful
- The constraint solving techniques can be used directly for your custom designs
 - Eg: In DSP software, if you know the resources, you write assembly code to minimize latency

Force-Directed Scheduling

- Similar to list scheduling
 - Can handle ML-RCS and MR-LCS
 - For ML-RCS, schedules step-by-step
 - BUT, selection of the operations tries to find the globally best set of operations
- Idea:
 - Find the mobility $\mu_i = t_i^L t_i^S$ of operations
 - Look at the operation type probability distributions
 - Try to flatten the operation type distributions
- Definition: operation probability density
 - $p_i(l) = \Pr \{ v_i \text{ starts at step } l \}$.
 - Assume uniform distribution:

$$p_i(l) = \frac{1}{\mu_i + 1} \quad \text{for } l \in [t_i^S, t_i^L]$$

Force-Directed Scheduling: Definitions

• Operation-type distribution (NOT normalized to 1)

•
$$q_k(l) = \sum_{i:T(v_i)=k} p_i(l)$$

• Operation probabilities over control steps:

•
$$p_i = \{p_i(0), p_i(1), K, p_i(n)\}$$

- Distribution graph of type *k* over all steps:
 - { $q_k(0), q_k(1), K, q_k(n)$ }
 - *q_k*(*l*) can be thought of as *expected* operator cost for implementing operations of type *k* at step *l*.

Example

Force-Directed Scheduling Algorithm: Idea

- Very similar to LIST_L(G(V,E), a)
 - Compute mobility of operations using ASAP and ALAP
 - Computer operation probabilities and type distributions
 - Select and schedule operations
 - Update operation probabilities and type distributions
 - Go to next control step
- Difference with list sched in selecting operations
 - Select operations with least force
 - Consider the effect on the type distribution
 - Consider the effect on successor nodes and their type distributions