
1

Shankar Balachandran
Assistant Professor, Dept. of CSE

IIT Madras
shankar@cse.iitm.ac.in

High Level SynthesisHigh Level Synthesis

2

References and Copyright
• Textbooks referred (none required)

[Mic94] G. De Micheli
“Synthesis and Optimization of Digital Circuits”
McGraw-Hill, 1994.

• Slides used:
Giovanni de Micheli’s Slides on Synthesis
Kia Bazargan’s Material on High Level Synthesis
[©Gupta] © Rajesh Gupta

UC-Irvine
http://www.ics.uci.edu/~rgupta/ics280.html

3

High Level Synthesis (HLS)
• The process of converting a high-level description

of a design to a netlist
Input:

o High-level languages (e.g., C)
o Behavioral hardware description languages (e.g., VHDL)
o Structural HDLs (e.g., VHDL)
o State diagrams / logic networks

Tools:
o Parser
o Library of modules

Constraints:
o Area constraints (e.g., # modules of a certain type)
o Delay constraints (e.g., set of operations should finish in λ

clock cycles)
Output:

o Operation scheduling (time) and binding (resource)
o Control generation and detailed interconnections

4

Architectural-level synthesis motivation
• Raise input abstraction level

Reduce specification of details
Extend designer base
Self-documenting design specifications
Ease modifications and extensions

• Reduce design time
• Explore and optimize macroscopic structure:

Series/parallel execution of operations

5

Synthesis

• Transform behavioral into structural view
• Architectural-level synthesis:

Architectural abstraction level
Determine macroscopic structure
Example: major building blocks

• Logic-level synthesis:
Logic abstraction level
Determine microscopic structure
Example: logic gate interconnection

6

High-Level Synthesis Compilation Flow

Lex

Parse

Compilation
front-end

Behavioral
Optimization

Intermediate
form

Arch synth
Logic synth

Lib Binding HLS backend

x = a + (b × c)+ d

+
+

×

a b c d

+

+ ×

a d b c

7

Example

diffeq {
read (x; y; u; dx; a);
repeat

xl = x+dx;
ul = u –(3 . x . u . dx) – (3 . y . dx)
yl = y + u . dx ;
c = xl < a;
X = xl; u = ul; y = yl;

until (c)
write (y);

}

8

Compilation and behavioral optimization

• Software compilation:
Compile program into intermediate form
Optimize intermediate form
Generate target code for an architecture

• Hardware compilation:
Compile programs/HDL into sequencing graph
Optimize sequencing graph
Generate gate-level interconnection for a cell
library

9

Behavioral-level optimization

• Semantic-preserving transformations aiming
at simplifying the model

• Applied to parse-trees or during their
generation

• Taxonomy:
Data-flow based transformations
Control-flow based transformations

10

Architectural synthesis and optimization
• Synthesize macroscopic structure in terms of

building-blocks
• Explore area/performance trade-off:

maximize performance of implementations subject to
area constraints
minimize area implementations subject to performance
constraints

• Determine an optimal implementation
• Create logic model for data-path and control

11

Design space and objectives
• Design space:

Set of all feasible implementations

• Implementation parameters:
Area
Performance:

o Cycle-time
o Latency
o Throughput (for pipelined implementations)

Power consumption

12

Design evaluation space

Area

Area

Area

Latency

Latency

Latency

Latency
Max

Area
Max

Cycle-tim
e

13

Dependency Graph (Sequencing Graph)

diffeq {
read (x; y; u; dx; a);
repeat

xl = x+dx;
ul = u –(3 . x . u . dx) – (3 . y . dx)
yl = y + u . dx ;
c = xl < a;
X = xl; u = ul; y = yl;

until (c)
write (y);

}

+××××

× × + <
-

-

x dxayu 3

ul vl c xl

14

Hardware modeling

• Circuit behavior:
Sequencing graphs

• Building blocks:
Resources

• Constraints:
Timing and resource usage

15

Resources
• Functional resources:

Perform operations on data
Example: arithmetic and logic blocks

• Storage resources:
Store data
Example: memory and registers

• Interface resources:
Example: busses and ports

16

Resources and circuit families

• Resource-dominated circuits.
Area and performance depend on few, well-
characterized blocks
The most common in DSP Circuits

• Non resource-dominated circuits
Area and performance are strongly influenced by
sparse logic, control and wiring
Example: some ASIC circuits

17

Implementation constraints
• Timing constraints:

Cycle-time
Latency of a set of operations
Time spacing between operation pairs

• Resource constraints:
Resource usage (or allocation)
Partial binding

18

Sequence Graph
• Remove all nodes

corresponding to
constants (with respect to
the loop)

• Remove edges from
those constants as well

• Remove nodes that are
being written in the loop
and the corresponding
edges

• Add NOP nodes at both
ends to represent reads
and writes of the loop

• Such a graph is much
simpler to operate on

+××××

× × + <
-

-

x dxayu 3

ul vl c xl
NOP

NOP

19

Synthesis in the temporal domain

• Scheduling:
Associate a start-time with each operation
Determine latency and parallelism of the
implementation
The schedule is called φ

• Scheduled sequencing graph:
Sequencing graph with start-time annotation

20

Synthesis in Temporal Domain

• Schedule:
Mapping of operations to time slots (cycles)
A scheduled sequencing graph is a labeled graph

+

NOP

××××

× × + <
-

-
NOP

1

2
3

4

+

NOP

×

×

××

×

×

+

<
-

-

NOP

1

2
3

4
Schedule 1 Schedule 2

21

Operation Types
• For each operation, define its type.
• For each resource, define a resource type,

and a delay (in terms of # cycles)
• T is a relation that maps an operation to a

resource type that can implement it
T : V {1, 2, ..., nres}.

• More general case:
A resource type may implement more than one
operation type (e.g., ALU)

• Resource binding:
Map each operation to a resource with the same type
Might have multiple options

22

Synthesis in the spatial domain
• Binding:

Associate a resource with each operation with the
same type
Determine the area of the implementation

• Sharing:
Bind a resource to more than one operation
Operations must not execute concurrently

• Bound sequencing graph:
Sequencing graph with resource annotation

23

Schedule in Spatial Domain
• Resource sharing

More than one operation bound to same resource
Operations have to be serialized
Can be represented using hyperedges (define vertex
partition)

+

NOP

××××

× × + <

-

-

NOP

1

2

3

4

24

Binding Should Change with Schedules

+

NOP

×

×

××

×

×

+

<
-

-

NOP

1

2
3

4

+

NOP

××××

× × + <
-

-
NOP

1

2
3

4

4 Multipliers
2 Adders

2 Multipliers
2 Adders

25

Scheduling and Binding

Resource dominated

Control dominated

• Resource constraints:
Number of resource instances of each type
{ak : k=1, 2, ..., nres}.

• Scheduling:
Labeled vertices φ (v3)=1.

• Binding:
Hyperedges (or vertex partitions) β (v2)=adder1.

• Cost:
Number of resources ≈ area
Registers, steering logic (Muxes, busses), wiring,
control unit

• Delay:
Start time of the “sink” node
Might be affected by steering logic and schedule
(control logic) – resource-dominated vs. ctrl-dominated

26

Architectural Optimization
• Optimization in view of design space flexibility
• A multi-criteria optimization problem:

Determine schedule φ and binding β.
Under area Α, latency λ and cycle time τ objectives

• Find non-dominated points in solution space
• Solution space tradeoff curves:

Non-linear, discontinuous
Area / latency / cycle time (more?)

27

Area/latency trade-off

1 2 3 4 5 6 7 8

5

10

15

7
8

12
13

(3,2)

(2,1)

(3,1)

Area

Latency

20

18
17

30

40

(2,2)
(2,1)

(1,2)

(1,1)

Cycle-tim
e

X

28

Scheduling and Binding
• Cost λ and Α determined by both φ and β.

Also affected by floorplan and detailed routing

• β affected by φ:
Resources cannot be shared among concurrent ops

• φ affected by β:
Resources cannot be shared among concurrent ops
When register and steering logic delays added to
execution delays, might violate cycle time.

• Order?
Apply either one (scheduling, binding) first

29

How Is the Datapath Implemented?
• In the following schedule and binding, every

operation has two inputs. If an input is not
shown explicitly, it comes from a unique register

+

×

×

××

×

×

+

<

-

-

1

2

3

4

30

Operation Scheduling
• Input:

Sequencing graph G(V, E), with n vertices
Cycle time τ.
Operation delays D = {di: i=0..n}.

• Output:
Schedule φ determines start time ti of operation vi.
Latency λ = tn – t0.

• Goal: determine area / latency tradeoff
• Classes:

Non-hierarchical and unconstrained
Latency constrained
Resource constrained
Hierarchical

31

Min Latency Unconstrained Scheduling
• Simplest case: no constraints, find min latency
• Given set of vertices V, delays D and a partial

order > on operations E, find an integer labeling
of operations φ: V Z+ Such that:

ti = φ(vi).
ti ≥ tj + dj ∀ (vj, vi) ∈ E.
λ = tn – t0 is minimum.

• Solvable in polynomial time
• Bounds on latency for resource constrained

problems
• ASAP algorithm used: topological order

32

ASAP Schedules
Schedule v0 at t0=0.
While (vn not scheduled)

o Select vi with all scheduled predecessors
o Schedule vi at ti = max {tj+dj}, vj being a predecessor of vi.

Return tn.

+

NOP

××××

× × + <
-

-
NOP

1

2
3

4

33

ALAP Schedules
Schedule vn at tn=λ.
While (v0 not scheduled)

o Select vi with all scheduled successors
o Schedule vi at ti = min {tj-dj}, vj being a succecessor of vi.

+

NOP

×

×
××

×

×

+ <
-

-
NOP

1

2
3

4

34

Remarks
• ALAP solves a latency-constrained problem
• Latency bound can be set to latency computed by

ASAP algorithm
• Mobility:

Defined for each operation
Difference between ALAP and ASAP schedule

• Slack on the start time

35

Example

• Operations with zero mobility:
{ v1, v2, v3, v4, v5 }
Critical path

• Operations with mobility one: { v6, v7 }
• Operations with mobility two: { v8, v9, v10, v11 }

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME
1

TIME
2

TIME
3

TIME
4

*

*

+ <

-

-

* *

*

* +

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

36

Scheduling under Relative Timing constraints
• Motivation:

Deadlines and Release times are absolute
Also makes sense to have relative constraints
o Eg: Memory fetch must be done within 6 cycles and takes a

minimum of 2 cycles

• Constraints:
Upper/lower bounds on start-time difference of any
operation pair
A minimum timing constraint lij ≥ 0 for specified i,j
pairs
A maximum timing constraint uij ≥ 0 for specified i,j
pairs

• Feasibility of a solution

37

Constraint graph model
• Start from sequencing graph

Model delays as weights on edges

• Add forward edges for minimum constraints:
Edge (vi , vj) with weight lij → tj ≥ ti + lij

• Add backward edges for maximum constraints:
That is, for constraint from vi to vj
add backward edge (vj , vi) with weight: -uij

o because tj ≤ ti + uij→ ti ≥ tj - uij

38

Example

NOP

NOP

* *

+ +

0

1 3

2 4

n

NOP

NOP

* *

+ +

0

1 3

2 4

n

MAX
TIME

3

MIN
TIME

4

-3

4

0 0

222

1 1

6vn

5v4

1v3

3v2

1v1

1v0

Start timeVertex1. Ensure that there are no
positive cycles in the graph

2. Find longest paths in the
graph between 2 nodes i and
j and use as delay separations

39

Resource Constraint Scheduling
• Constrained scheduling

General case NP-complete
Minimize latency given constraints on area or
the resources (ML-RCS)
Minimize resources subject to bound on latency (MR-
LCS)

• Exact solution methods
ILP: Integer Linear Programming
Hu’s heuristic algorithm for identical processors

• Heuristics
List scheduling
Force-directed scheduling

40

• Use binary decision variables
i = 0, 1, ..., n
l = 1, 2, ..., λ’+1 λ’ given upper-bound on latency
xil = 1 if operation i starts at step l, 0 otherwise.

• Set of linear inequalities (constraints),
and an objective function (min latency)

• Observations

ti = start time of op i.

is op vi (still) executing at step l?

ILP Formulation of ML-RCS

[Mic94] p.198

))(),((

0

i
L
ii

S
i

L
i

S
iil

vALAPtvASAPt

tlandtlforx

==

><=

il
l

i xlt ∑= .

⇒=∑
+−=

1
1

l

dlm
im

i

x ?

41

Constraints
• Operations start only once

Σ xil = 1 i = 1, 2,…, n

• Sequencing relations must be satisfied
ti ≥ tj + dj ti - tj - dj ≥ 0 for all (vj, vi) є E

• Resource bounds must be satisfied
Simple case (unit delay)
Σ l xil ≤ ak k = 1,2,…nres ; for all l

• Equation 2 can be rewritten as
Σ l • xil – Σ l • xjl – dj ≥ 0 for all (vj, vi) є E

i:T(vi)=k

42

Start Time vs. Execution Time
• For each operation vi , only one start time
• If di=1, then the following questions are the

same:
Does operation vi start at step l?
Is operation vi running at step l?

• But if di>1, then the two questions should be
formulated as:

Does operation vi start at step l?
o Does xil = 1 hold?

Is operation vi running at step l?
o Does the following hold?

1
1

=∑
+−=

l

dlm
im

i

x ?

43

Operation vi Still Running at Step l ?
• Is v9 running at step 6?

Is x9,6 + x9,5 + x9,4 = 1 ?

• Note:
Only one (if any) of the above three cases can happen
To meet resource constraints, we have to ask the
same question for ALL steps, and ALL operations of
that type

v9

4
5
6

x9,4=1

v9

4
5
6

x9,5=1

v9

4
5
6

x9,6=1

44

Operation vi Still Running at Step l ?
• Is vi running at step l ?

Is xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi

l

l-1

l-di+1

...

xi,l-di+1=1

vil

l-1

l-di+1

...

xi,l-1=1

vil

l-1

l-di+1

...

xi,l=1

. . .

45

• Constraints:
Unique start times:

Sequencing (dependency) relations must be satisfied

Resource constraints

• Objective: min cTt.
t =start times vector, c =cost weight (e.g., [0 0 ... 1])
When c =[0 0 ... 1], cTt =

ILP Formulation of ML-RCS (cont.)

∑ ==
l

il nix ,...,1,0,1

j
l

jl
l

ilijjji dxlxlEvvdtt ∑∑ +≥⇒∈∀+≥ ..),(

1,...,1,,...,1,
)(: 1

+==≤∑ ∑
= +−=

λlnkax resk
kvTi

l

dlm
im

i i

nl
l

xl∑ .

46

ILP Example
• Assume λ = 4
• First, perform ASAP and ALAP

(we can write the ILP without ASAP and ALAP, but
using ASAP and ALAP will simplify the inequalities)

+

NOP

××××

× × + <
-

-
NOP

1

2
3

4

+

NOP

×

×
××

×

×

+ <
-

-
NOP

1

2
3

4

v2v1

v3

v4

v5

vn

v6

v7

v8

v9

v10

v11

v2v1

v3

v4

v5

vn

v6

v7 v8

v9

v10

v11

47

ILP Example: Unique Start Times Constraint
• Without using ASAP and

ALAP values:
• Using ASAP and ALAP:

1
...
...
...

1
1

4,113,112,111,11

4,23,22,21,2

4,13,12,11,1

=+++

=+++

=+++

xxxx

xxxx
xxxx

....
1
1

1
1

1
1
1
1
1

4,93,92,9

3,82,81,8

3,72,7

2,61,6

4,5

3,4

2,3

1,2

1,1

=++

=++

=+

=+

=

=

=

=

=

xxx
xxx

xx
xx

x
x
x
x
x

* * + <

-

-

* * * * +

NO
P

NO
P

0

1 2

3

4

5

6

7

8

9

1
0

1
1

n

48

ILP Example: Dependency Constraints
• Using ASAP and ALAP, the non-trivial inequalities

are: (assuming unit delay for + and *)

01.4.3.2.5
01.4.3.2.5
01.3.2.4
01.3.2.4.3.2
01.3.2.4.3.2
01.2.3.2

4,113,112,115,

4,93,92,95,

3,72,74,5

3,102,101,104,113,112,11

3,82,81,84,93,92,9

2,61,63,72,7

≥−−−−

≥−−−−

≥−−−

≥−−−−++

≥−−−−++

≥−−−+

xxxx
xxxx
xxx

xxxxxx
xxxxxx
xxxx

n

n
* * + <

-

-

* * * * +

NO
P

NO
P

0

1 2

3

4

5

6

7

8

9

10

11

n

49

ILP Example: Resource Constraints
• Resource constraints (assuming 2 adders and 2

multipliers)

• Objective:
Since λ=4 and sink has no mobility, any feasible
solution is optimum, but we can use the following
anyway:

2
2
2
2
2
2
2

4,114,94,5

3,113,103,93,4

2,112,102,9

1,10

3,83,7

2,82,72,62,3

1,81,61,21,1

≤++

≤+++

≤++

≤

≤+

≤+++

≤+++

xxx
xxxx
xxx
x
xx
xxxx
xxxx

4,3,2,1, .4.3.2 nnnn xxxxMin +++

50

Example

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7
8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

Note that the schedule is different from both ALAP and ASAP schedules.

51

ILP Formulation of MR-LCS
• Dual problem to ML-RCS
• Objective:

Goal is to optimize total resource usage, a.
Objective function is cTa , where entries in c
are respective area costs of resources

• Constraints:
Same as ML-RCS constraints, plus:
Latency constraint added:

Note: unknown ak appears in constraints.
• Resource usage is unknown in the constraints
• Resource usage is the objective to minimize

1. +≤∑ λnl
l

xl

52

ILP Solution
• Use standard ILP packages
• Transform into LP problem
• Advantages:

Exact method
Others constraints can be incorporated

• Disadvantages:
Works well only up to few thousand variables

53

Hu’s Algorithm
• Simple case of the scheduling problem

Operations of unit delay
Operations (and resources) of the same type

• Hu’s algorithm
Greedy
Polynomial AND optimal
Computes lower bound on number of resources for a
given latency
OR: computes lower bound on latency subject to
resource constraints

• Basic idea:
Label operations based on their distances from the sink
Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

54

Hu’s algorithm
• Assumptions:

Graph is a forest
All operations have unit delay
All operations have the same type

• Algorithm:
Greedy strategy
Exact solution

55

Example

• Assumptions:
One resource type only
All operations have unit delay

• Labels:
Distance to sink

3 2 1 1

2

1

4 4 3 2 2

0

1 2

3

4

5

6

7

8

9

10

11

n

56

Hu’s Algorithm
HU (G(V,E), a) {

Label the vertices // label = length of longest path
passing through the vertex

l = 1
repeat {

U = unscheduled vertices in V whose
predecessors have been scheduled
(or have no predecessors)

Select S ⊆ U such that |S| ≤ a and labels in S
are maximal

Schedule the S operations at step l by setting
ti=l, i: vi ∈ S.

l = l + 1
} until vn is scheduled.

}

57

3 11

Example

Step 1: Op 1,2,6

Step 2: Op 3,7,8

Step 3: Op 4,9,10

Step 4: Op 5,11

2 1

2

4 4 3 2 2

0

1 2

3

4

5

6

7

8

9

10

11

n

_
a = 3

4 4 3 2

23

2

1

2

11

1

58

Hu’s Algorithm: Example (a=3)

59

List Scheduling
• Greedy algorithm for ML-RCS and MR-LCS

Does NOT guarantee optimum solution

• Similar to Hu’s algorithm
Operation selection decided by criticality
O(n) time complexity

• More general input
Resource constraints on different resource types

60

List Scheduling Algorithm: ML-RCS

LIST_L (G(V,E), a) {
l = 1
repeat {

for each resource type k {
Ul,k = available vertices in V.
Tl,k = operations in progress.

Select Sk ⊆ Ul,k such that |Sk| + |Tl,k| ≤ ak
Schedule the Sk operations at step l

}
l = l + 1

} until vn is scheduled.
}

61

Example

* *

+

<

-

-

* * *

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

TIME 6

TIME 7

Resource bounds:
3 multipliers with delay 2

1 ALU with delay 1

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

62

List Scheduling Algorithm: MR-LCS
LIST_R (G(V,E), λ’) {

a = 1, l = 1
Compute the ALAP times tL.
if t0

L < 0
return (not feasible)

repeat {
for each resource type k {

Ul,k = available vertices in V.
Compute the slacks { si = ti

L - l, ∀ vi∈ Ul,k }.
Schedule operations with zero slack, update a
Schedule additional Sk ⊆ Ul,k under a constraints

}
l = l + 1

} until vn is scheduled.
}

63

Example

TIME 1

TIME 2

TIME 3

TIME 4

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

Assumptions
Unit-delay resources
Maximum latency = 4

Start with :
a1 = 1 multiplier
a2 = 1 ALUs

Step 1
Two multiplications on CP
Set a1 = 2
Schedule Mult 1,2
Schedule ALU 10

Step 2
Schedule Mult 3, 6
Schedule ALU 11

Step 3
Schedule Mult 7,8
Schedule ALU 4

Step 4
Set a2=2
Schedule ALU 5, 9

64

Summary
• Scheduling algorithms are used by tools

Compilers use them when you write code for DSP
processors
Tools like Xilinx ISE, Synopsys DC etc. use them when
you compiler HDL models

• Good understanding of “under the hood”
operations of tools is useful

• The constraint solving techniques can be used
directly for your custom designs

Eg: In DSP software, if you know the resources, you
write assembly code to minimize latency

65

Force-Directed Scheduling
• Similar to list scheduling

Can handle ML-RCS and MR-LCS
For ML-RCS, schedules step-by-step
BUT, selection of the operations tries to find the
globally best set of operations

• Idea:
Find the mobility μi = ti

L – ti
S of operations

Look at the operation type probability distributions
Try to flatten the operation type distributions

• Definition: operation probability density
pi (l) = Pr { vi starts at step l }.
Assume uniform distribution:

],[
1

1)(L
i

S
i

i
i ttlforlp ∈

+
=

μ

66

Force-Directed Scheduling: Definitions
• Operation-type distribution (NOT normalized to 1)

• Operation probabilities over control steps:

• Distribution graph of type k over all steps:

qk (l) can be thought of as expected operator cost
for implementing operations of type k at step l.

∑
=

=
kvTi

ik
i

lplq
)(:

)()(

)}(,),1(),0({ npppp iiii Κ=

)}(,),1(),0({ nqqq kkk Κ

67

Example

+

NOP

××××

× × + <
-

-
NOP

1

2
3

4

0)4(

83.0
3
1

2
1)3(

33.2
3
1

2
1

2
11)2(

83.2
3
1

2
111)1(

=

=+=

=+++=

=+++=

mult

mult

mult

mult

q

q

q

q

2.83

2.33

.83

66.1
3
1

3
11)4(

2
3
1

3
1

3
11)3(

1
3
1

3
1

3
1)2(

33.0
3
1)1(

=++=

=+++=

=++=

==

add

add

add

add

q

q

q

q

0

1

2

1.66

0.33

68

Force-Directed Scheduling Algorithm: Idea
• Very similar to LIST_L(G(V,E), a)

Compute mobility of operations using ASAP and ALAP
Computer operation probabilities and type distributions
Select and schedule operations
Update operation probabilities and type distributions
Go to next control step

• Difference with list sched in selecting operations
Select operations with least force
Consider the effect on the type distribution
Consider the effect on successor nodes and their type
distributions

