High Level Synthesis

Shankar Balachandran
Assistant Professor, Dept. of CSE
IIT Madras
shankar@cse.iitm.ac.in
References and Copyright

- **Textbooks referred (none required)**
 - [Mic94] G. De Micheli
 “Synthesis and Optimization of Digital Circuits”

- **Slides used:**
 - Giovanni de Micheli’s Slides on Synthesis
 - Kia Bazargan’s Material on High Level Synthesis
 - [©Gupta] © Rajesh Gupta
 UC-Irvine
 http://www.ics.uci.edu/~rgupta/ics280.html
High Level Synthesis (HLS)

- The process of converting a high-level description of a design to a netlist
 - **Input:**
 - High-level languages (e.g., C)
 - Behavioral hardware description languages (e.g., VHDL)
 - Structural HDLs (e.g., VHDL)
 - State diagrams / logic networks
 - **Tools:**
 - Parser
 - Library of modules
 - **Constraints:**
 - Area constraints (e.g., # modules of a certain type)
 - Delay constraints (e.g., set of operations should finish in \(\lambda \) clock cycles)
 - **Output:**
 - Operation scheduling (time) and binding (resource)
 - Control generation and detailed interconnections
Architectural-level synthesis motivation

• Raise input abstraction level
 ▪ Reduce specification of details
 ▪ Extend designer base
 ▪ Self-documenting design specifications
 ▪ Ease modifications and extensions

• Reduce design time

• Explore and optimize macroscopic structure:
 ▪ Series/parallel execution of operations
Synthesis

• Transform behavioral into structural view

• Architectural-level synthesis:
 ▪ Architectural abstraction level
 ▪ Determine *macroscopic* structure
 ▪ Example: major building blocks

• Logic-level synthesis:
 ▪ Logic abstraction level
 ▪ Determine *microscopic* structure
 ▪ Example: logic gate interconnection
High-Level Synthesis Compilation Flow

Lex
Parse

Behavioral Optimization

Arch synth
Logic synth
Lib Binding

Compilation front-end
Intermediate form
HLS backend

$x = a + (b \times c) + d$
Example

diffeq {
 read (x; y; u; dx; a);
 repeat
 xl = x+dx;
 ul = u –(3 \cdot x \cdot u \cdot dx) – (3 \cdot y \cdot dx)
 yl = y + u \cdot dx ;
 c = xl < a;
 X = xl; u = ul; y = yl;
 until (c)
 write (y);
}

Compilation and behavioral optimization

- **Software compilation:**
 - Compile program into intermediate form
 - Optimize intermediate form
 - Generate target code for an architecture

- **Hardware compilation:**
 - Compile programs/HDL into sequencing graph
 - Optimize sequencing graph
 - Generate gate-level interconnection for a cell library
Behavioral-level optimization

- Semantic-preserving transformations aiming at simplifying the model
- Applied to parse-trees or during their generation
- Taxonomy:
 - *Data-flow* based transformations
 - *Control-flow* based transformations
Architectural synthesis and optimization

- Synthesize macroscopic structure in terms of building-blocks
- Explore area/performance trade-off:
 - maximize performance of implementations subject to area constraints
 - minimize area implementations subject to performance constraints
- Determine an optimal implementation
- Create logic model for data-path and control
Design space and objectives

• **Design space:**
 - Set of all feasible implementations

• **Implementation parameters:**
 - Area
 - Performance:
 - Cycle-time
 - Latency
 - Throughput (for pipelined implementations)
 - Power consumption
Design evaluation space
diffeq {
 read (x; y; u; dx; a);
 repeat
 xl = x+dx;
 ul = u – (3 \cdot x \cdot u \cdot dx) – (3 \cdot y \cdot dx)
 yl = y + u \cdot dx ;
 c = xl < a;
 X = xl; u = ul; y = yl;
 until (c)
 write (y);
}
Hardware modeling

- **Circuit behavior:**
 - Sequencing graphs

- **Building blocks:**
 - Resources

- **Constraints:**
 - Timing and resource usage
Resources

- **Functional resources:**
 - Perform operations on data
 - Example: arithmetic and logic blocks

- **Storage resources:**
 - Store data
 - Example: memory and registers

- **Interface resources:**
 - Example: busses and ports
Resources and circuit families

- *Resource-dominated circuits.*
 - Area and performance depend on few, well-characterized blocks
 - The most common in DSP Circuits
- *Non resource-dominated circuits*
 - Area and performance are strongly influenced by sparse logic, control and wiring
 - Example: some ASIC circuits
Implementation constraints

- **Timing constraints:**
 - Cycle-time
 - Latency of a set of operations
 - Time spacing between operation pairs

- **Resource constraints:**
 - Resource usage (or allocation)
 - Partial binding
Sequence Graph

- Remove all nodes corresponding to constants (with respect to the loop)
- Remove edges from those constants as well
- Remove nodes that are being written in the loop and the corresponding edges
- Add NOP nodes at both ends to represent reads and writes of the loop
- Such a graph is much simpler to operate on
Synthesis in the temporal domain

• **Scheduling:**
 - Associate a **start-time** with each operation
 - Determine **latency** and parallelism of the implementation
 - The schedule is called ϕ

• **Scheduled sequencing graph:**
 - Sequencing graph with start-time annotation
Synthesis in Temporal Domain

- **Schedule:**
 - Mapping of operations to time slots (cycles)
 - A scheduled sequencing graph is a labeled graph

![Schedule 1 Diagram]

![Schedule 2 Diagram]
Operation Types

- For each operation, define its type.
- For each resource, define a resource type, and a delay (in terms of # cycles)
- \(T \) is a relation that maps an operation to a resource type that can implement it
 - \(T : V \rightarrow \{1, 2, ..., n_{res}\} \).
- More general case:
 - A resource type may implement more than one operation type (e.g., ALU)
- Resource binding:
 - Map each operation to a resource with the same type
 - Might have multiple options
Synthesis in the spatial domain

- **Binding:**
 - Associate a resource with each operation with the same type
 - Determine the area of the implementation

- **Sharing:**
 - Bind a resource to more than one operation
 - Operations must not execute concurrently

- **Bound sequencing graph:**
 - Sequencing graph with resource annotation
Schedule in Spatial Domain

- **Resource sharing**
 - More than one operation bound to same resource
 - Operations have to be serialized
 - Can be represented using hyperedges (define vertex partition)
Binding Should Change with Schedules

4 Multipliers
2 Adders

2 Multipliers
2 Adders
Scheduling and Binding

• **Resource constraints:**
 - Number of resource instances of each type \(\{a_k : k=1, 2, ..., n_{res}\} \).

• **Scheduling:**
 - Labeled vertices \(\phi(v_3) = 1 \).

• **Binding:**
 - Hyperedges (or vertex partitions) \(\beta(v_2) = \text{adder1} \).

• **Cost:**
 - Number of resources \(\approx \) area
 - Registers, steering logic (Muxes, busses), wiring, control unit

• **Delay:**
 - Start time of the “sink” node
 - Might be affected by steering logic and schedule (control logic) – resource-dominated vs. ctrl-dominated
Architectural Optimization

- Optimization in view of design space flexibility
- A multi-criteria optimization problem:
 - Determine schedule ϕ and binding β.
 - Under area A, latency λ and cycle time τ objectives
- Find non-dominated points in solution space
- Solution space tradeoff curves:
 - Non-linear, discontinuous
 - Area / latency / cycle time (more?)
Area/latency trade-off

<table>
<thead>
<tr>
<th>Area</th>
<th>Latency</th>
<th>Cycle-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

- (3,2) (2,2) (4,2)
- (3,1) (2,1) (4,1)
- (1,2) (1,1)
Scheduling and Binding

• Cost λ and A determined by both ϕ and β.
 ▪ Also affected by floorplan and detailed routing

• β affected by ϕ:
 ▪ Resources cannot be shared among concurrent ops

• ϕ affected by β:
 ▪ Resources cannot be shared among concurrent ops
 ▪ When register and steering logic delays added to execution delays, might violate cycle time.

• Order?
 ▪ Apply either one (scheduling, binding) first
How Is the Datapath Implemented?

• In the following schedule and binding, every operation has two inputs. If an input is not shown explicitly, it comes from a unique register.
Operation Scheduling

- **Input:**
 - Sequencing graph $G(V, E)$, with n vertices
 - Cycle time τ.
 - Operation delays $D = \{d_i: i=0..n\}$.

- **Output:**
 - Schedule ϕ determines start time t_i of operation v_i.
 - Latency $\lambda = t_n - t_0$.

- **Goal:** determine area / latency tradeoff

- **Classes:**
 - Non-hierarchical and unconstrained
 - Latency constrained
 - Resource constrained
 - Hierarchical
Min Latency Unconstrained Scheduling

- Simplest case: no constraints, find min latency
- Given set of vertices V, delays D and a partial order > on operations E, find an integer labeling of operations $\phi: V \rightarrow \mathbb{Z}^+$ Such that:
 - $t_i = \phi(v_i)$.
 - $t_i \geq t_j + d_j \quad \forall (v_j, v_i) \in E$.
 - $\lambda = t_n - t_0$ is minimum.

- Solvable in polynomial time
- Bounds on latency for resource constrained problems
- ASAP algorithm used: topological order
ASAP Schedules

- Schedule v_0 at $t_0=0$.
- While (v_n not scheduled)
 - Select v_i with all scheduled predecessors
 - Schedule v_i at $t_i = \max \{t_j+d_j\}$, v_j being a predecessor of v_i.
- Return t_n.
ALAP Schedules

- Schedule v_n at $t_n = \lambda$.
- While (v_0 not scheduled)
 - Select v_i with all scheduled successors
 - Schedule v_i at $t_i = \min \{t_j - d_j\}$, v_j being a successor of v_i.
Remarks

- ALAP solves a latency-constrained problem
- Latency bound can be set to latency computed by ASAP algorithm
- Mobility:
 - Defined for each operation
 - Difference between ALAP and ASAP schedule
- Slack on the start time
Example

- Operations with zero mobility:
 - \{ v_1, v_2, v_3, v_4, v_5 \}
 - Critical path
- Operations with mobility one: \{ v_6, v_7 \}
- Operations with mobility two: \{ v_8, v_9, v_{10}, v_{11} \}
Scheduling under Relative Timing constraints

• Motivation:
 ▪ Deadlines and Release times are absolute
 ▪ Also makes sense to have relative constraints
 o Eg: Memory fetch must be done within 6 cycles and takes a minimum of 2 cycles

• Constraints:
 ▪ Upper/lower bounds on start-time difference of any operation pair
 ▪ A minimum timing constraint $l_{ij} \geq 0$ for specified i,j pairs
 ▪ A maximum timing constraint $u_{ij} \geq 0$ for specified i,j pairs

• Feasibility of a solution
Constraint graph model

- Start from sequencing graph
 - Model delays as weights on edges
- Add forward edges for *minimum* constraints:
 - Edge \((v_i, v_j)\) with weight \(l_{ij} \rightarrow t_j \geq t_i + l_{ij}\)
- Add backward edges for maximum constraints:
 - That is, for constraint from \(v_i\) to \(v_j\)
 - add backward edge \((v_j, v_i)\) with weight: \(-u_{ij}\)
 - because \(t_j \leq t_i + u_{ij}\) \(\rightarrow t_i \geq t_j - u_{ij}\)
1. Ensure that there are no positive cycles in the graph.
2. Find longest paths in the graph between 2 nodes i and j and use as delay separations.
Resource Constraint Scheduling

- **Constrained scheduling**
 - General case NP-complete
 - Minimize latency given constraints on area or the resources (ML-RCS)
 - Minimize resources subject to bound on latency (MR-LCS)

- **Exact solution methods**
 - ILP: Integer Linear Programming
 - Hu’s heuristic algorithm for identical processors

- **Heuristics**
 - List scheduling
 - Force-directed scheduling
ILP Formulation of ML-RCS

- Use binary decision variables
 - \(i = 0, 1, ..., n \)
 - \(l = 1, 2, ..., \lambda' + 1 \) \(\lambda' \) given upper-bound on latency
 - \(x_{il} = 1 \) if operation \(i \) starts at step \(l \), 0 otherwise.

- Set of linear inequalities (constraints), and an objective function (min latency)

- Observations
 - \(x_{il} = 0 \) for \(l < t_i^S \) and \(l > t_i^L \)
 - \(t_i^S = ASAP(v_i) \), \(t_i^L = ALAP(v_i) \)
 - \(t_i = \sum l \cdot x_{il} \) \(t_i = \) start time of op \(i \).
 - \(\sum_{m=l-d_i+1}^{l} x_{im} \geq 1 \) \(\Rightarrow \) is op \(v_i \) (still) executing at step \(l \)?

[Mic94] p.198
Constraints

• Operations start only once
 \[\Sigma x_{il} = 1 \quad i = 1, 2, \ldots, n \]

• Sequencing relations must be satisfied
 \[t_i \geq t_j + d_j \quad \Rightarrow \quad t_i - t_j - d_j \geq 0 \quad \text{for all } (v_j, v_i) \in E \]

• Resource bounds must be satisfied
 Simple case (unit delay)
 \[\Sigma_{i:T(v_i) = k} x_{il} \leq a_k \quad k = 1, 2, \ldots, n_{res} ; \quad \text{for all } l \]

• Equation 2 can be rewritten as
 \[\Sigma l \cdot x_{il} - \Sigma l \cdot x_{jl} - d_j \geq 0 \quad \text{for all } (v_j, v_i) \in E \]
Start Time vs. Execution Time

• For each operation v_i, only one start time
• If $d_i=1$, then the following questions are the same:
 ▪ Does operation v_i start at step l?
 ▪ Is operation v_i running at step l?
• But if $d_i>1$, then the two questions should be formulated as:
 ▪ Does operation v_i start at step l?
 o Does $x_{il} = 1$ hold?
 ▪ Is operation v_i running at step l?
 o Does the following hold?
 $$\sum_{m=l-d_i+1}^{l} x_{im} = 1$$
Operation v_i Still Running at Step l?

- **Is v_9 running at step 6?**
 - **Is** $x_{9,6} + x_{9,5} + x_{9,4} = 1$?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>v_9</td>
<td></td>
</tr>
</tbody>
</table>

$x_{9,6} = 1$

$x_{9,5} = 1$

$x_{9,4} = 1$

- **Note:**
 - Only one (if any) of the above three cases can happen
 - To meet resource constraints, we have to ask the same question for ALL steps, and ALL operations of that type
Operation ν_i Still Running at Step l?

- Is ν_i running at step l?
 - Is $x_{i,l} + x_{i,l-1} + \ldots + x_{i,l-d_i+1} = 1$?
ILP Formulation of ML-RCS (cont.)

• Constraints:
 - Unique start times: \(\sum_l x_{il} = 1, \quad i = 0,1,...,n \)
 - Sequencing (dependency) relations must be satisfied
 \[t_i \geq t_j + d_j \quad \forall (v_j, v_i) \in E \Rightarrow \sum_l l \cdot x_{il} \geq \sum_l l \cdot x_{jl} + d_j \]
 - Resource constraints
 \[\sum_{i:T(v_i)=k} \sum_{m=l-d_i+1}^l x_{im} \leq a_k, \quad k = 1,...,n_{res}, \quad l = 1,...,\bar{\lambda} + 1 \]

• Objective: \(\min c^T t. \)
 - \(t = \) start times vector, \(c = \) cost weight (e.g., \([0 \ 0 \ ... \ 1]\))
 - When \(c = [0 \ 0 \ ... \ 1], \ c^T t = \sum_l l \cdot x_{nl} \)
ILP Example

- Assume $\bar{\lambda} = 4$
- First, perform ASAP and ALAP
 - (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will simplify the inequalities)
ILP Example: Unique Start Times Constraint

- Without using ASAP and ALAP values:

\[x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} = 1 \]
\[x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 1 \]
...
\[x_{11,1} + x_{11,2} + x_{11,3} + x_{11,4} = 1 \]

- Using ASAP and ALAP:

\[x_{1,1} = 1 \]
\[x_{2,1} = 1 \]
\[x_{3,2} = 1 \]
\[x_{4,3} = 1 \]
\[x_{5,4} = 1 \]
\[x_{6,1} + x_{6,2} = 1 \]
\[x_{7,2} + x_{7,3} = 1 \]
\[x_{8,1} + x_{8,2} + x_{8,3} = 1 \]
\[x_{9,2} + x_{9,3} + x_{9,4} = 1 \]
...
ILP Example: Dependency Constraints

- Using ASAP and ALAP, the non-trivial inequalities are: (assuming unit delay for + and *)

\[
\begin{align*}
2 \cdot x_{7,2} + 3 \cdot x_{7,3} - x_{6,1} - 2 \cdot x_{6,2} - 1 & \geq 0 \\
2 \cdot x_{9,2} + 3 \cdot x_{9,3} + 4 \cdot x_{9,4} - x_{8,1} - 2 \cdot x_{8,2} - 3 \cdot x_{8,3} - 1 & \geq 0 \\
2 \cdot x_{11,2} + 3 \cdot x_{11,3} + 4 \cdot x_{11,4} - x_{10,1} - 2 \cdot x_{10,2} - 3 \cdot x_{10,3} - 1 & \geq 0 \\
4 \cdot x_{5,4} - 2 \cdot x_{7,2} - 3 \cdot x_{7,3} - 1 & \geq 0 \\
5 \cdot x_{n,5} - 2 \cdot x_{9,2} - 3 \cdot x_{9,3} - 4 \cdot x_{9,4} - 1 & \geq 0 \\
5 \cdot x_{n,5} - 2 \cdot x_{11,2} - 3 \cdot x_{11,3} - 4 \cdot x_{11,4} - 1 & \geq 0
\end{align*}
\]
ILP Example: Resource Constraints

- **Resource constraints** (assuming 2 adders and 2 multipliers)

 \[
 x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \leq 2
 \]

 \[
 x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \leq 2
 \]

 \[
 x_{7,3} + x_{8,3} \leq 2
 \]

 \[
 x_{10,1} \leq 2
 \]

 \[
 x_{9,2} + x_{10,2} + x_{11,2} \leq 2
 \]

 \[
 x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \leq 2
 \]

 \[
 x_{5,4} + x_{9,4} + x_{11,4} \leq 2
 \]

- **Objective:**

 - Since \(\lambda=4 \) and sink has no mobility, any feasible solution is optimum, but we can use the following anyway:

 \[
 \text{Min} \quad x_{n,1} + 2.x_{n,2} + 3.x_{n,3} + 4.x_{n,4}
 \]
Note that the schedule is different from both ALAP and ASAP schedules.
ILP Formulation of MR-LCS

- **Dual problem to ML-RCS**
- **Objective:**
 - Goal is to optimize total resource usage, a.
 - Objective function is $c^T a$, where entries in c are respective area costs of resources.
- **Constraints:**
 - Same as ML-RCS constraints, plus:
 - Latency constraint added:
 $$\sum_{l} l \cdot x_{nl} \leq \bar{\lambda} + 1$$
 - Note: unknown a_k appears in constraints.
- **Resource usage is unknown in the constraints**
- **Resource usage is the objective to minimize**
ILP Solution

• Use standard ILP packages
• Transform into LP problem
• Advantages:
 ▪ Exact method
 ▪ Others constraints can be incorporated
• Disadvantages:
 ▪ Works well only up to few thousand variables
Hu’s Algorithm

- **Simple case of the scheduling problem**
 - Operations of unit delay
 - Operations (and resources) of the same type

- **Hu’s algorithm**
 - Greedy
 - Polynomial AND optimal
 - Computes lower bound on number of resources for a given latency
 - OR: computes lower bound on latency subject to resource constraints

- **Basic idea:**
 - Label operations based on their distances from the sink
 - Try to schedule nodes with higher labels first (i.e., most “critical” operations have priority)
Hu’s algorithm

- **Assumptions:**
 - Graph is a forest
 - All operations have unit delay
 - All operations have the same type

- **Algorithm:**
 - Greedy strategy
 - Exact solution
Example

- **Assumptions:**
 - One resource type only
 - All operations have unit delay

- **Labels:**
 - Distance to sink
Hu’s Algorithm

HU (G(V,E), a) {
 Label the vertices // label = length of longest path passing through the vertex

l = 1

 repeat {
 U = unscheduled vertices in V whose predecessors have been scheduled (or have no predecessors)
 Select S ⊆ U such that |S| ≤ a and labels in S are maximal
 Schedule the S operations at step \(l \) by setting \(t_i = l, i: v_i \in S \).
 \(l = l + 1 \)
 } until \(v_n \) is scheduled.
}
Example

- $a = 3$

Step 1: Op 1,2,6
Step 2: Op 3,7,8
Step 3: Op 4,9,10
Step 4: Op 5,11
Hu’s Algorithm: Example (a=3)
List Scheduling

• Greedy algorithm for ML-RCS and MR-LCS
 ▪ Does NOT guarantee optimum solution

• Similar to Hu’s algorithm
 ▪ Operation selection decided by criticality
 ▪ O(n) time complexity

• More general input
 ▪ Resource constraints on different resource types
List Scheduling Algorithm: ML-RCS

LIST_L (G(V,E), a) {
 l = 1
 repeat {
 for each resource type k {
 $U_{l,k} =$ available vertices in V.
 $T_{l,k} =$ operations in progress.
 Select $S_k \subseteq U_{l,k}$ such that $|S_k| + |T_{l,k}| \leq a_k$
 Schedule the S_k operations at step l
 }
 l = l + 1
 } until v_n is scheduled.
}
Example

Resource bounds:

3 multipliers with delay 2
1 ALU with delay 1
List Scheduling Algorithm: MR-LCS

LIST_R (G(V,E), λ') {
 a = 1, l = 1
 Compute the ALAP times t^L.
 if $t^L_0 < 0$
 return (not feasible)
 repeat {
 for each resource type k {
 $U_{l,k} =$ available vertices in V.
 Compute the slacks $\{ s_i = t^L_i - l, \forall v_i \in U_{l,k} \}$.
 Schedule operations with zero slack, update a
 Schedule additional $S_k \subseteq U_{l,k}$ under a constraints
 }
 l = l + 1
 } until v_n is scheduled.
}
Example

Assumptions
Unit-delay resources
Maximum latency = 4
Start with :
\(a_1 = 1 \) multiplier
\(a_2 = 1 \) ALUs

Step 1
Two multiplications on CP
Set \(a_1 = 2 \)
Schedule Mult 1,2
Schedule ALU 10

Step 2
Schedule Mult 3, 6
Schedule ALU 11

Step 3
Schedule Mult 7,8
Schedule ALU 4

Step 4
Set \(a_2 = 2 \)
Schedule ALU 5, 9
Summary

• Scheduling algorithms are used by tools
 ▪ Compilers use them when you write code for DSP processors
 ▪ Tools like Xilinx ISE, Synopsys DC etc. use them when you compiler HDL models

• Good understanding of “under the hood” operations of tools is useful

• The constraint solving techniques can be used directly for your custom designs
 ▪ Eg: In DSP software, if you know the resources, you write assembly code to minimize latency
Force-Directed Scheduling

- Similar to list scheduling
 - Can handle ML-RCS and MR-LCS
 - For ML-RCS, schedules step-by-step
 - BUT, selection of the operations tries to find the *globally* best set of operations

- Idea:
 - Find the mobility \(\mu_i = t_i^L - t_i^S \) of operations
 - Look at the operation type probability distribution
 - Try to flatten the operation type distributions

- Definition: operation probability density
 - \(p_i (l) = \Pr \{ v_i \text{ starts at step } l \} \).
 - Assume uniform distribution:
 \[
 p_i(l) = \frac{1}{\mu_i + 1} \quad \text{for } l \in [t_i^S, t_i^L]
 \]
Force-Directed Scheduling: Definitions

- Operation-type distribution (NOT normalized to 1)

 \[q_k(l) = \sum_{i:T(v_i)=k} p_i(l) \]

- Operation probabilities over control steps:

 \[p_i = \{ p_i(0), p_i(1), \ldots, p_i(n) \} \]

- Distribution graph of type \(k \) over all steps:

 \[\{ q_k(0), q_k(1), \ldots, q_k(n) \} \]

- \(q_k(l) \) can be thought of as expected operator cost for implementing operations of type \(k \) at step \(l \).
Example

\[q_{\text{add}} (1) = \frac{1}{3} = 0.33 \]

\[q_{\text{add}} (2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1 \]

\[q_{\text{add}} (3) = 1 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 2 \]

\[q_{\text{add}} (4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66 \]

\[q_{\text{mult}} (1) = 1 + 1 + \frac{1}{2} + \frac{1}{3} = 2.83 \]

\[q_{\text{mult}} (2) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = 2.33 \]

\[q_{\text{mult}} (3) = \frac{1}{2} + \frac{1}{3} = 0.83 \]

\[q_{\text{mult}} (4) = 0 \]

Diagram:

- Leaf nodes: 0.33, 1, 2, 1.66
- Internal nodes:
 - Multiplication: 2.83, 2.33, 0.83, 0
Force-Directed Scheduling Algorithm: Idea

• Very similar to \textsc{LIST}_L(G(V,E), a)
 ▪ Compute mobility of operations using ASAP and ALAP
 ▪ Computer operation probabilities and type distributions
 ▪ Select and schedule operations
 ▪ Update operation probabilities and type distributions
 ▪ Go to next control step

• Difference with list sched in selecting operations
 ▪ Select operations with least force
 ▪ Consider the effect on the type distribution
 ▪ Consider the effect on successor nodes and their type distributions