CORDIC - Basic Algorithm and Enhancements

K. Sridharan, IIT Madras

February 25, 2010
The CORDIC algorithm provides an iterative method of performing vector rotations by arbitrary angles using only shifts and adds.

Vector rotation transform: For rotating in a Cartesian plane by angle ϕ.

\[
\begin{align*}
 x' &= x \cos \phi - y \sin \phi \\
 y' &= y \cos \phi + x \sin \phi
\end{align*}
\]
The CORDIC algorithm provides an iterative method of performing vector rotations by arbitrary angles using only shifts and adds.

Vector rotation transform: For rotating in a Cartesian plane by angle ϕ.

\[
\begin{align*}
x' &= x \cos \phi - y \sin \phi \\
y' &= y \cos \phi + x \sin \phi
\end{align*}
\]

OR

\[
\begin{align*}
x' &= \cos \phi [x - y \tan \phi] \\
y' &= \cos \phi [y + x \tan \phi]
\end{align*}
\]
If rotation angles are selected such that \(\tan \phi = \pm 2^{-i}\), then

\[
X_{i+1} = K_i (X_i - Y_i \cdot d_i \cdot 2^{-i})
\]
\[
Y_{i+1} = K_i (Y_i + X_i \cdot d_i \cdot 2^{-i})
\]
\[
Z_{i+1} = Z_i - d_i \cdot \tan^{-1}(2^{-i})
\]

where

\[
K_i = \cos(\tan^{-1}(2^{-i})) = \frac{1}{\sqrt{1 + 2^{-2i}}}
\] \hspace{1cm} (1)

The scale factor \(K_i\) can be accumulated and the vector is scaled by

\[
A_n = \prod_{n} \sqrt{1 + 2^{-2i}}
\]
Polar \((R, \theta)\) to Rectangular \((X, Y)\) transformation:

\[
\begin{align*}
+X \quad +Y \\
\theta = 65^\circ
\end{align*}
\]

Rotation by 65°
Polar \((R, \theta)\) to Rectangular \((X,Y)\) transformation:

Initialize

\[
\begin{align*}
X_0 &= R \\
Y_0 &= 0 \\
Z_0 &= \theta
\end{align*}
\]
Polar \((R, \theta)\) to Rectangular \((X,Y)\) transformation:

Rotate by \(\tan^{-1}(2^0) = 45^\circ\)

\[
\begin{align*}
X_1 &= X_0 - Y_0 \\
Y_1 &= Y_0 + X_0 \\
Z_1 &= Z_0 - \tan^{-1}(2^0)
\end{align*}
\]
Polar \((R, \theta)\) to Rectangular \((X, Y)\) transformation:

Rotate by
\[
\tan^{-1}(2^{-1}) = 26.5^\circ
\]

\[
X_2 = X_1 - \frac{Y_1}{2}
\]
\[
Y_2 = Y_1 + \frac{X_1}{2}
\]
\[
Z_2 = Z_1 - \tan^{-1}(2^{-1})
\]
Polar \((R, \theta)\) to Rectangular \((X,Y)\) transformation:

Rotate by \(\tan^{-1}(2^{-2}) = 14^\circ\)

\[
X_3 = X_2 + \frac{Y_2}{4}
\]

\[
Y_3 = Y_2 - \frac{X_2}{4}
\]

\[
Z_3 = Z_2 + \tan^{-1}(2^{-2})
\]
Basics of CORDIC

Goal
Enhancement
References

Example
Conventional CORDIC architecture

Diagram of CORDIC architecture

- **MUX**
- **Register**
- **Barrel Shifter**
- **Adder/Subtractor**
- **Scalar**
- **ROM**
- **Counter**
- **Comparator**
- **Subtractor**
- **Mode Select**

Flow of operations:
1. **Input**: \(X_0, X_0[MSB]\)
2. **Mode Selection**
3. **Operation**:
 - **Basic CORDIC**
 - **Counter**
 - **ROM**
4. **Output**: \(X_{out}\), \(Y_{out}\), \(Z_{out}\)

Key Components:
- **MUX** for selection
- **Register** for storage
- **Barrel Shifter** for shifting
- **Adder/Subtractor** for arithmetic operations
- **Scalar** for scaling
- **ROM** for storing lookup values
- **Counter** for iterative processing
- **Comparator** for decision-making
Reduce area consumption without affecting the performance in terms of **accuracy** and **number of iterations**.
- ROM: The size of the ROM is $2^\lceil \log_2(\text{no. of iterations}) \rceil$.
- Barrel shifters.
- Range is limited to $|Z| \leq 99^\circ$. Multiplexers (both at input and output) are required to extend the range.
1. Completely eliminates barrel-shifters.

2. Represents all the angles in $[-180^\circ, 180^\circ]$ using combinations of two signed elementary angles, $\tan^{-1}2^{-1}$ and $\tan^{-1}2^{-3}$.

OR

\[
Z = k_0 \cdot \tan^{-1}(2^{-1}) + k_1 \tan^{-1}(2^{-3})
\]
Either

\[X = K_1 \cdot (X - (-1)^{sgn(k_0)} \cdot Y \cdot 2^{-1}) \]
\[Y = K_1 \cdot (Y + (-1)^{sgn(k_0)} \cdot X \cdot 2^{-1}) \]

Or

\[X = X - (-1)^{sgn(k_1)} \cdot Y \cdot 2^{-3} \]
\[Y = Y + (-1)^{sgn(k_1)} \cdot X \cdot 2^{-3} \]
Either

\[X = K_1 \cdot (X - (-1)^{sgn(k_0)} \cdot Y \cdot 2^{-1}) \]
\[Y = K_1 \cdot (Y + (-1)^{sgn(k_0)} \cdot X \cdot 2^{-1}) \]

Or

\[X = X - (-1)^{sgn(k_1)} \cdot Y \cdot 2^{-3} \]
\[Y = Y + (-1)^{sgn(k_1)} \cdot X \cdot 2^{-3} \]
max(|k_0| + |k_1|) = 13

for

170° = 4 \cdot \tan^{-1}(2^{-1}) + 9 \cdot \tan^{-1}(2^{-3})

and

177° = 8 \cdot \tan^{-1}(2^{-1}) - 5 \cdot \tan^{-1}(2^{-3})

Found using C program.
\[
\text{max}(|k_0| + |k_1|) = 13
\]

for
\[
170^\circ = 4 \cdot \tan^{-1}(2^{-1}) + 9 \cdot \tan^{-1}(2^{-3})
\]

and
\[
177^\circ = 8 \cdot \tan^{-1}(2^{-1}) - 5 \cdot \tan^{-1}(2^{-3})
\]

Found using C program.
Basics of CORDIC

Goal

Enhancement

References

Features

Iterative equations

Convergence

Architecture

1

MUX

0

oscaler

360 X 10

ROM

1

MUX

0

1

MUX

0oscaler

state

machine

sub

1

MUX

0

sel

sel

sel

+

+/−

sub

+

+/−

accumulator

accumulator

10

sel

sel

4 4

m stop−bit

4 0389 5

Z_{in}

\text{sgn}(k_0)

\text{sgn}(k_1)

X

\frac{X}{2}

\frac{X}{8}

\frac{Y}{2}

Y

Y_i

1

MUX

0

M_0

\text{MUX}

1

0

\text{MUX}

1

M_1

\text{MUX}

1

M_2

\text{MUX}

1

M_3

\text{MUX}

1

M_4

\text{sgn}(k_1)

|k_1|

\text{sgn}(k_0)

|k_0|

