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Local oscillator requirements

@ Generate equally spaced frequencies from an input
reference frequency

@ Waveform shape not very important
@ Spurious output must be sufficiently low
@ Noise must be sufficiently low
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Frequency divider

Vref
R
f /N
Vref/N ref : N refl
R(N-1) frequency
divider

Digital frequency divider can generate multiple frequencies

Frequencies not equally spaced
Reference frequency higher than output frequencies
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Voltage multiplier

voltage difference
zero, at steady state

Vref \ K1Vctl +Vo Vout
K, \ dt '

=+

VN T

- R(N-1)

Vou/N = V¢ at steady state -

@ A controlled source to generate the output voltage

@ Divided output voltage subtracted from the reference to
generate error

@ Output source controlled by the integral of the error
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Frequency multiplier

frequency difference
zero, at steady state

C0S(27fyeit) frequency frer \
measure [ ¥ Ko |\ dt

KueoVerrtfo

COS(27T 5, t) slope = Kyeo

fuut \

o

f

frequency’ N
measure . v
ctl

cos(21t,, /N t)

fou/N = fif at steady state
@ A controlled source to generate the output frequency
@ A voltage controlled oscillator
@ Divided output frequency subtracted from the reference
frequency to generate error

@ Output source controlled by the integral of the frequency
error

Nagendra Krishnapura Phase locked loop frequency synthesizers



Phase and frequency

@ Sinusoid cos(#(t))
@ Phase: 4(t)

1 do(t
@ Instantaneous frequency fi = E#
)

Typically expressed as f; = f, + fo(t) where f, is the
average frequency and fe is the instantaneous frequency
error

Phase 6(t) = 27fot + &g + 27 [ fe(t)dt

@ Phase 0(t) = 2nfot + ®o + ¢(t)

@ ®,: phase offset
@ ¢(t): instantaneous phase
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Frequency multiplier

phase difference

COS(21 1) KyeoVertfo

fref \ Vv
frequency ct
measure [ ] Kz Sdl 4:(? @ oS (21, t)
S
[

K

fou/N

frequency
measure

N

€os(21f, /N t)

fou/N = f o at steady state

@ Integration before subtraction
@ Integral of the frequency is phase

@ Integrator+subtractor measures phase difference between
the reference input and the divided output (feedback)
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Frequency multiplier—Phase locked loop

Vctl = Kpd ((pref'(pout/N)

Cos(zmreft"'q)ref) Vctl vcovctl+f0

phase K
detector @ cos(2mou)

fou/N

\ N

cos(21f, /N t + @, /N)

fou/N = f¢ at steady state

@ Use a phase detector to generate the control voltage
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Voltage controlled oscillator

slope = K,
fout \
Ve 1:out: chovctl+fo f0
Vctl
2T t
+
Vctl + evco

— 21K, \ dt

9o fvco = fo + chovctl
[*) cho = 27Tfot + 27TKVC0 fvcﬂdt
@ Kygo: VCO gainin Hz/V
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Phase detector

Cp— phase Kpa(®1-@2)
@, | detector

Kpg: Phase detector gain

@ K,q: Phase detector gain in V/radian

@ |deal phase detector: assumed to have an output
Vopd = Kpd (91 — ¢2)
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Phase locked loop model
+;l\ 2T[fout t"'q)out
&/

2.r[freft"'cpref ~ | Vctl
(= I&/ 2TK o S dt

27, IN t+ D, /N |
1IN |

Vcll = 2-’-[(fref'f0ut/’\‘)t + cDref - cDout/N
At steady state, fo=fou/N; Vg = Pref - PoudN
@ Modelled in terms of phases of signals
@ At steady state (lock), V¢ is a constant = fgf = fout /N .

@ The loop locks with
Vet = Kpd (Pref — Pout/N) = (Nfrer — fo)/Kuco—This is the
“operating point” of the circuit
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Phase locked loop model

27t
2T ot Prert Pres /9 | VertVey Sd + ;l\ 21ty t+ Pyt Pout
K 21K t
T W veo &/

1/N |
21 /N O, N+ /N |

@ Anincrement ¢, in the input phase causes increments
®out, Vet
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Phase locked loop model—incremental picture

Qout
21K o \ dt

1/N |<

@ Anincrement ¢, in the input phase causes increments
®out, Vet
@ Type-l loop—One integrator in the loop
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Phase locked loop model—frequency domain

Pour(S)

@ Loop gain L(s) = 27KyqKyeo /Ns
@ Transfer function ¢out(s)/¢rer () = N/(1 + Ns/(27Kpg Kveo)
@ Type-I loop—One integrator in the loop
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Type-l PLL—Ilimitations

@ Phase error when locked (fou = Nfiet):
Pret — (Dout/N = (Nfref - fo)/choKpd

O —7 < Drgs — ¢’out/N <T =
fo — mKpdKveo < fout < fo + mKpaKyeo

@ Lock range limited by periodicity of phase detector (period
of all phase detectors not necessarily +)

@ KpgKyeo large for wide lock range
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XOR phase detector

Tref
+1
reference
-1
reference
dout
divider o/p +1 . ﬁD&u
divider o/p
a1
pdout +l_:tI:EI:EI:EI:EH; Average value = 2Ad/Tr-1
-1 Output periodic at 2f,
ok | f
Trerl2
AD = q)ref'q)div
2 T AND N . NAD\ A
Vour(f) = = (Ad) - —) 5(f)+—— ) sinc | —— | e "2®§(f—2nfief)
T 2 T T
n=1
2 7 4AD = . /nAd
Vou(t) = = (A(D - §>+— sinc ( ——— | cos(4mnfrert—NA®)
T ™ s
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XOR phase detector

@ Output average value = 2A® /7 — 1 =2/7(AP — 7/2)
[~ Kpd = 2/7T
@ Phase detector offset = 7/2
@ Loop locks with & — @yt /N = 7/2 for Nfes = 1o
@ Output range = +7/2 around an offset of 7/2
@ PLL lock range = f, — 7/2KpqKyeo < four < fo + m/2Kpd Kyeo

@ Output contains 2f,¢s and its harmonics
@ Output =2/7(AP — 7/2) + ", an cos(4nnfrest + an))
@ Periodic signal in addition to Kyg A®

@ All real phase detectors have a periodic “error” in addition
to the “dc” term proportional to phase error
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XOR phase detector-Error spectrum

15 . . —
0 Dot Oy =712

0.5

C, T f i ¢

0 5 10 15 20
15 T T =

A ]
7 ﬁ[ T

0 Al | 9

0 5 15 20
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PLL with XOR phase detector

2, a,cos(4mf t+a,) ("error")

Qout
2K, \ dit

1/N|<

@ Error E(t) added to the input of the phase detector

@ Disturbances in the vco phase ¢qut(t), even with a perfect
reference (¢ref(t) = 0)

@ VCO output: cos(2mNfiest + NPres — 7/2 + dout(t))
@ VCO output not periodic at Nf,gf
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PLL with XOR phase detector

70

— ideal phase
— error
601 — phase with error

-10 1 I I 1
0 2 4 6 8 10
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PLL with XOR phase detector—frequency domain

E(s) E(2mf) = 5, a, € 3(f-2nf,s)

(pref(s) Vctl(s) 2T[KV o (pout(s)

12 (offset)

Pueo(S)/N
1/N

@¢(s) = 0 for a perfectly periodic reference

@ Transfer function from the error to the output
dout(S)/E(S) = dout(S)/dret(s) = N/1 + NS/(ZWKpd Kvco)
@ E(j2nf) =), anexp(jan)d(f — 2nfie)
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Type-l PLL

dout(S) . bout(S)

= 1)
E (S) ¢ref (S)
1 + 27erd cho/NS
1
= 3
(4)
Loop gain
i 27TKpd KVCO

L(s) = —\s ®)

Closed loop bandwidth

Kpg K

fggg = — N = (6)
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Type | PLL

loop gain |L|

2K KiedN

I(pout/q)rell
20log(N)

dB

w_)

N ©

2K K yoof/N

(loop bandwidth)
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Feedback system

In our system,

Pout(S) N 27TKdevco/NS

In general, in a feedback system with a loop gain L(s)
L(s
Hclosedloop (3) = Higea (S)%LES) (8)
)

Where Higeal (S) is the ideal closed loop gain (with L = oo). This
can be approximated as

Helosedioop(S) = Hideal (S)L(S) L <1 (10)
= Higeal(8) L >1 (11)
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PLL with XOR phase detector—Output signal

Output phase error (constant phase offsets ignored)

#(j2nf) = Z anH (j4mnfier ) exp(jon)d(f — 2nfier) (12)

= ) bnexp(jfn)d(f — 2nfrer) (13)
n=1

¢(t) = > bncos(4mnfiest + Bn) (14)
n=1

Vour(t) = cos(2nNfiert + > by cos(4mnfiest + 8n)) (15)
n=1
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PLL with XOR phase detector—Output signal

Considering only the term at 2f,s, and b; < 1

Vout (t) = COS(ZWNfreft + by COS(47Tfreft + ﬁl)) (16)
= c0s(27Nfet) cos(by cos(4nfiest + 51)) (17)
—sin(27Nfet) sin(by cos(4nfiert + (1)) (18)

cos(2mNfiet) — by cos(4nfiest + (1) Sin(2rNf19)
cos(2mNfiert) — b1/2sin(2w(N + 2)fiert + (1) (20)
—b1/2sin(2n(N — 2)frert + 1) (21)

@ Spurious tones in the output at 2f.s; from the desired
frequency

@ Reference feedthrough

@ In general, spurious tones will be present at nf,s from the
desired PLL output
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Reference feedthrough

by = ayH(j4rfrer)| (22)
K deco/jZNfref
= a;N|[—> : 23
! ‘ 1+ Kpd cho/JZNfref ( )
-~ ‘ Kpd Kveo (24)
jZNfref
4 f 3
°N 25
™ 2fref ( )
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Reference feedthrough—example

@ To generate 1 GHz from 1 MHz reference

@ b; = 102 (spurious tones 46 dB below the oscillation level
e N =10°

9 f—3dB/fref = 7T/2 x 107° = f_3yg = 57 Hz
@ Lock range = 7Nf_34g ~ 50 kHz

@ Lock range is too small; It can’t switch to the next channel
which is 1 MHz away!
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Relationship between magnitude and phase [Bode]

dB e Poles
7 -20dB/dec o Zzeros
-40dB/dec
. . : —20dB/(Ijec W
Ipl Ipz le Ips
60dB/dec
R
'TVZ 4
-t +
-3m2 T+
211 +
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Relationship between magnitude and phase [Bode]

All poles and zeros of the network assumed to be real and in
the left half plane.

@ The magnitude plot(log-log) consists of segments of slope
20k dB/decade

@ Poles and zeros form breakpoints between segments
@ At each pole the slope increments by -20 dB/decade

@ At each zero the slope increments by +20 dB/decade
@ Phase at poles/zeros will be mr /4 radians

@ Derivative of phase is positive at a zero and negative at a
pole
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Stability criteria for negative feedback loops

dB

e Poles
7 -20dB/dec o Zzeros
-40dB/dec
. . —2(I)dB/(Ijec W
Ipl Ipz le ! Ips
P
! 60dB/dec
]
I
I
i
I
P1 P2 | P W
0 t t t T t
>45° phase margin
2 1 '
-t +
-3m2 T
2n T
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Stability criteria for negative feedback loops

All poles and zeros of the loop gain function assumed to be real
and in the left half plane.

@ Phase margin should be greater than a specified
amount (assume 45°)

@ Phase lag at w, should be less than 125°
@ At wy, the Bode plot should have a slope of -20 dB/decade
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Increasing the lock range of the phase detector-I

increased Kp4K.c, (dc)

=>increased lock range increased loop bandwidth
(faster switching)
dB, loop gain 1®eo/%el 4B, closed loop gain
20l0g(N)
21 K /NS 008 N Dt @

increased
reference
| \(1&) feedthrough
@ Increase KyqKyco at all frequencies
@ Causes increased reference feedthrough

increased KoK, co

=> increased lock range
2mKpaKco/NS

21K poKeo/N
21K 4K,eo/N,
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Increasing the lock range of the phase detector-I|

dB, loop gain
increased KK, (dc)
=> increased lock range

[®eo/®el 4B, closed loop gain
20l0g(N)

218y Koo/ NS? ode ]\ Do @

2T oK /NS

-40dB/decade at
unity loop gain

=> instability!

2K oK o/N

|

decreased
reference
feedthrough

(2MKgKo/N)

@ Increase KpqKyco Only at dc (steady state phase error
reduces)

@ In the limit, use an integrator K4 | /S = steady state phase
error reduces to zero

@ Two integrators in a loop = unstable system

@ Increased attenuation slope can reduce reference
feedthrough
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Increasing the lock range of the phase detector-lll

dB, loop gain
increased K;4K,c, (dc) |
Puco Preil
=> increased lock range el dB, closed loop gain
20log(N)
N\ et W
T 27K Kico/NS”
z
N
27K /NS -20dB/decade at unity loop gain {
I

i

decreased
reference
feedthrough

/ => stable system

zero at Ky /K,

@ Increase KyqKyco Only at dc (steady state phase error
reduces)

@ In the limit, use an integrator K4 | /S = steady state phase
error reduces to zero

@ Maintain —20 dB/decade slope at unity loop gain =
introduce a zero before wy

@ Introduce a pole beyond w, to increase attenuation of
reference feedthrough
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Type |l PLL—with two poles and a zero

zero at
steady state

Zmreft+ (Drei \

211t

+ P 2ﬂfuul IH'q)uul
21K e, \ dt

21t /N t+D /N ‘
1/N ‘

AVt o 27 er-Fou /Nt + Dy - Py/N
At steady state, fo=fo/N; Pt - Pou/N = 0;

@ At steady state, reference input and divider output have the
same frequency and phase

@ The integrator’s output stabilizes to the value required to
make the VCO to oscillate at Nfief

@ At steady state, Vg = (Nfrer — fo)/Kueo
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Type || PLL—Additional attenation poles

poles beyond

zero at

steady state 21K Ko N 21t
\ Kp‘“ S dt l
2t P Vay W 27 By
e filter > 21K, S dt

27 /N t+ D /N

1/N}

AVt @ 27T Fou/N)E + P - PN
At steady state, fo=fo,/N; D - Do, /N = 0;

@ Additional poles beyond the unity loop gain frequency to
reduce reference feedthrough
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Type |l PLL—Frequency domain

P1 > 2T[Kdevco/N

Ko, more poles can be used
s
@ei(S) + \Vctl(s) 1 | Ve 21K o GoulS)
i gzj 1+s/p, S

Qou(S)/N |
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Type |l PLL—Implementation

lout

Tt

o .
" reference out reference
—
reference _| ¥
B divider olp divider olp
%m:w ®» Ry proportional 1
" o Paiv output i
divider ofp ,FH:H:F_ -
1 [ C C
reference out t 2
pdout  *a
o : L L
lep Cjintegral - -
output
proportional +1;R -
output —

IR

integral TN -
e U . slope=1,,/C

@ XOR gate with a current output (£lcp)
@ Integral term Kpq,1/s: Current flowing into a capacitor C,
@ Proportional term K,q: Current flowing into a resistor Ry

@ Series RC to obtain the sum
@ Additional capacitor C, to introduce the second pole
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Type Il PLL with an XOR phase detector

error: 50% duty cycle at 2f

2, a,cos(dmft+a,) (“error")
Kpa, \ dt

A\ +X Veu Dout
~(5)—C — vacogdt
- - +

|
K
(poul/ N Tr/z W

1/N I

@ Loop locks with 7 /2 offset between ¢ and ¢yco /N for all
frequencies

@ Periodic error E(t) is a 50% duty cycle square wave at 2f ¢

=2 Z sinc ( ) cos(4nnfest — N7 /2)
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Type Il PLL with an XOR phase detector-Frequency

domain

E(j2rf) = 5, a, €% 3(f-2nf,.)
E(S) Kpd,l

S
Qret . fi\ . +Z 6@\/“ 2T|]S(VCQ Qout
- - +
\sz | Kp
Pou/N I// |
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Type Il PLL with an XOR phase detector

@ Lock range is not limited by phase detector

@ Large error signal even under lock = significant reference
feedthrough

@ XOR output sensitive to duty cycle of inputs

@ Better to have a phase detector with zero output for zero
phase error

@ Better to have a phase detector sensitive only to the edges

@ Loop bandwidth can be widened while maintaining low
reference feedthrough
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Tri state phase detector

At At Ll o —2
“ r:f_>RST
(fofr =
$_>RST
Bt Bt dlvl—D Q =

output=Q,-Qp

@ Output +1,—-1,0
o +1 if reference leads divider output
o —1 ifreference lags divider output
@ 0 if reference coincides with divider output

Phase locked loop frequency synthesizers
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Tri state phase detector-waveforms

Tre

s k—
P AL
1 1 L1 [— -1
et N o I B gL
PR [ NN D N D 1 L L
+1 +1
Qu S Qa
= 1 n_n
Q Q
Bﬁ I& Bﬁ I&
AD = - Dy, AD = - Dy,
A leading B A lagging B

@ Flip flops assumed to be reset instantaneously
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Tri state phase detector-reset path delay

Tref . Tref
SPEEL AR
a L1 L1 L 1
S s N e I | gL i I |
D S i R i
+1 +1
Qx M1 I Qa I I I
+1 +1
Qs I I Qs M1
EE— I@ —_
A® = q)rev'q’dlv QA and QB

simultaneously
on

A leading B A lagging B

@ Qa and Qg simultaneously high for a short duration
@ Qp — Qg proportional to A®
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Tri state phase detector with charge pump

Vadd

lep

UP,
105, Q UP)\°
L2 i
ref RST out Rl Cz
B JRST
div

DN
b o Qs (ON)\ ©

o L1

@ Qa and Qg drive a charge pump
@ Average current driven into the loop filter is Icp AP /27

Phase locked loop frequency synthesizers
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Tri state phase detector implementation

1
—iD Q CLK Q

CLK —pgst

D latch with reset and D="1"

CLK —s

ol ©

RESET

0 n

Qo] O

(D input with "1" implicit)
Realization using SR latches RESET

Realization using NOR gates

@ D flip flops with reset implemented using SR latches
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Tri state phase detector-Current source mismatch

Vvdd phase offset
in steady state

AD =

Drer Py T,

f
lp+ol e

+1

|

Qu (UP) \ © AT

+1

[ I [y

1 1]

lout
YR G, B_1

Qa1
Qs (DN) \ © Qg

Itop ]

aw L1 -

1 [ I

-
C 1 out

@ Ideally A® = 0 under lock in a
feedthrough (loop filter input =

(zero average)

type-1l loop = no reference
0)

@ Mismatch between top and bottom current sources causes
a non zero A® = 0 and reference feedthrough
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Type-1l PLL: transfer functions

27TK d |K
L(s) Moz (L SKpa /Kpa)
bout (S) N 1+ SKpd/Kpd,I
Pref (S) g2 N Kpd 1
27rKpd | cho Kpd |
bout (S) l SKpd/Kpd [
Vet (S) Kpd 2 N Kpd
; S 1
27Kpd 1 Kveo Kpd | +
32 N
bout(S) 27Kpd 1 Kveo
Puco(S) 2 N Kpd
S 1
2rKpd 1 Kveo Kpd,| +
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Type-1l PLL: transfer functions

L(S) _ 1+ SKpd /Kpd,l (30)
=7 = Koy
s2 N s 2% 41
27Kpd 1 Kveo + Kpd,I +

@ 2 poles and a zero
@ Zero z; = —Kpq,1/kpd

@ Natural frequency wn = /27Kpg 1Kvco /N

@ Quality factor Q = \/NKpq 1 /27Kco/Kpd, damping factor
¢ =1/2Q = Kpa /2/NKpa 1 27Kyco

@ For well separated (real) poles, p1 ~ —Kyq,/kpd,
P1 ~ —27KpgKveo/N + Kpg 1 /kpd,

@ Pole zero doublet py,z;; p1 at a slightly higher frequency
than z4
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Type-ll PLL: Reference input

z
|Pou/ Pl dB, closed loop gain S(f) dBc/Hz Bl :<§
20log(N) | %,] fa
. . . W N2 N [0V}
o% 3 z ™~ '
S ﬁ 8 reference oscillator
o5 £ X hase noise
235 g
N pll phase noise
bout(S) — N 1+ SKpd/Kpd,l 31
Pret (S) s2 N +s pd +1

@ Low pass response; Reference noise attenuated at high
frequencies

@ Low frequency gain of N, -3 dB bandwidth of 27K,qKyco /N

@ Pole zero doublet p; ~ z; = Kyq,1/kpd; p1 at a slightly
higher frequency than z,
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Type-Il PLL: Noise added to control node

dB, loop gain
19oufVel - 4 (radians/v)
20log(N/Kpq)

1 w + t u)
" 1 o '
< é\ +20dB/dec X zg -20dB/dec
N3 2 2
% ¥ E
o N “
g

gou(s) _ N SKpa /Kpa, (32)

Veu(s) Kpd o2 N Kpd

s S : +1

27Kpd 1 Kveo + Kpd,
@ radians/Volt

@ Bandpass response

@ Mid band gain of N /Kyq

@ Lower cutoff at Kyq 1 /kpd, Upper cutoff at 27K, Kyeo /N
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Type-ll PLL: VCO noise

vco phase noise

30dB/dec.(1/f%)
[ Qoud/ Pcol N
Poul@col 4 3 Y, Slf) dBC/HZ ™\ 20dB/dec.(1/2)
é E © pll phase noise
0dB t d ’ :
+10dB/dec g‘ Zg \
g ¥
4 a
E
~N
2 N___
Pout(s) 2rKpa 1Kveo (33)
Puco(S) s2 N +s Kpd +1
Kpd 1K K
2mKpd, |1 Kvco pd,l

@ Second order highpass response

@ Feedback loop effectively inactive beyond 27KpqKyco /N

Nagendra Krishnapura
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Type-ll PLL phase noise example

S(f) dBc/Hz S,(f) dBc/Hz total phase noise
1 1 due to o w *ﬁ w
£ 2 £ \
3 X 3
; dueto Z <
reference oscillator N2 2
E
N

reference
dominated| vco dominated
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LC oscillator

L N L

C ——c

Rp (Gp) TVWGp
_\/\/\/\_ _GN
Gy 2Gp
for sustained
oscillation

@ Lossless LC resonator sustains a sinusoidal voltage
indefinitely

@ LC resonator loss modeled using a parallel resistance R,

@ Compensate the loss of a lossy LC resonator using a
parallel negative resistance

@ Oscillation frequency f, = 1/27vLC
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LC resonator losses

L

ERUTEN ;

L C

RS,L ’_Ci
|—J\/\'j\:\—-| |—J\/\'j\:\—-| Rp=Rp lIRpc

Rp, = (wL)Z/Rs,LD QL2 Rst Rpc= 1/((-0|-)2Rs,c|:| ch Rsc
@ Capacitor and Inductor series resistances represented by
equivalent parallel resistances

@ Effective R, is a parallel combination of losses from all
components
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Negative resistance-implementation

<
Il

'GN

transconductance Gy
in positive feedback

@ Transconductor connected in positive feedback
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Negative resistance-implementation

i 'gm/2

gmv/2 gmv/2 L{ }J i

Itail Itail

@ Cross coupled differential pair

@ Negative conductance = gm/2 where g, is the
transconductance of each MOS device
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LC oscillator

“Oml2 —]

Itail

@ Parallel LC tank with cross coupled differential pair

@ This and its variants are the most commonly used
topologies of CMOS integrated oscillators
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LC oscillator-amplitude

Itail

@ Complete switching of MOS devices assumed

@ Equivalent to a square wave current of amplitude 1/2
driving the parallel LC tank
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LC oscillator-amplitude

/Qinusoid atf,
I v -
L L
F—c i i

——c
Gp Gp
b "
M1 Off Ml on
172 172 0 Myon | | M off 0 2
"bias" point
1/2 —
Vp—Vn T0
2l --- 2IRp/T
112
. fundamental . .
driving \ component differential voltage
current \ ‘
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LC oscillator-amplitude

@ Equivalent to a square wave current of amplitude 1/2
driving the parallel LC tank

@ All components except the fundamental filtered out

@ Amplitude of the differential sinusoidal voltage = 2IRp /7
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LC oscillator-tunability

a b
| ] 11
e 2] e
P- pP-

1

a b [:|b

@ Tunable using a varactor
@ Reverse hiased p-n junction

@ MOS device in accumulation—Ilarger tuning range; more
popular in CMOS ICs
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Accumulation MOS varactor

a
b |

R

[m u n n |
n+ n+ n+ n+ n+ I’Vﬂngef
<>
Lfinger

@ nMOS in n-well

@ Multi fingered structure to reduce gate, “channel”
resistance

@ W ~ few microns

@ L > Ly, to reduce parasitics

@ Gate can be contacted at both ends to further reduce
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MOS varactor with differential excitation

b 1 T ) T

.L l--||J-||--||J-|l--||J-||--|Jl ap_“:::|T|j:“_a
Lot \ )
\ 0V due to symmetry

@ Interdigitated fingers—alternate ones connected to a, and
an

@ Region between gates connected to a, and a, at 0V due
to symmetry

@ All n+ contacts except the ones at the end can be
removed [5]

@ Smaller structure, lower series resistance, and smaller

parasitic capacitances
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On chip inductors

@ Planar inductor on one of the metal layers
@ Top level metal preferred
@ Farther from the substrate
@ Smaller parasitic capacitance
@ Lesser coupling to substrate, and hence, loss
@ Thicker top level metal (~ 2 um) available in mixed signal
processes
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Inductor loss mechanisms

distributed model: more sections can be added

C
|| || ||
Il Il Il
1 L Rs 2 1 2
— NP —AN——TP—AIN——
=_c —c, _ _ _
% Rl RZ % %
substrate substrate

@ Winding resistance
@ RgL/W
e Effective Rg larger due to skin effect
@ Copper: 2 um skin depth (x 1/+/f) at 1 ghz

@ Capacitive coupling to substrate and its resistance

@ Inductive coupling to (resistive) substrate

@ Quality factors upto 15 possible, typically 8-10

@ Use adequate thickness and number of vias during layout
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Differential inductor

vias

ar]

@ Symmetrical differential inductor
@ More compact for a given differential inductance
@ Larger potential difference between turns = larger effect of
interwinding parasitics
@ Symmetrically laid out single ended inductors

@ Greater area
@ Interwinding parasitic capacitance not very significant
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Inductor simulation

@ Some processes have scalable inductor library and models

@ Typically needs to be simulated from process
parameters—metal thickness, resistivity, intermetal
spacing etc.

@ Inductance value

@ FastHenry, Asitic etc.
@ Accurate estimation possible
@ Quality factor
o FastHenry, Asitic etc.
@ Harder to accurately estimate losses due to substrate
coupling

@ Parasitic capacitance

@ First order parallel plate estimation—OK for single ended
inductors

@ FastCap etc.

@ Use distributed models for accuracy
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VCO design: bias current and transistor sizing

Bias current is a function of tank losses and desired
amplitude
@ Maximize the inductance for a large amplitude from a small
current
Transistors typically minimum length at high
frequencies—longer to lower 1/f corner

Bias source: longer than minimum length to lower 1/f
noise

Minimize all parasitics to maximize tuning range from the
varactor

Transistor W /L to get the desired g, for startup in the
worst case

@ Large gmn = increased phase noise; So don’t go crazy!
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5GHz VCO in 0.18 yum CMOS

® L =4nH and C = 0.25 pF (differential) chosen

@ 6 turn inductor on top metal layer, ~ 140 xm square
@ From inductor simulations, Q ~ 6

@ Minimum length transistors
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VCO (higher freq. version)-measured f vs. V

frequency vs Vctl curve

6.3 T

fvco(in GHz)

vetl (V)
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VCO-simulated phase noise

Phase Noise
20 ey
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Programmable divider-Synchronous counter

D Q1
—
o
D Q&
©
—> c
8
K]
£
Qo
1S
o
o
D Q1—
fin
In

@ All of the circuitry running at full speed
@ Very high power dissipation
@ Asynchronous operation preferred
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Programmable divider-Pulse swallow architecture

11
fin . . output
—-—P/P+1 > —-—M
f /N
1 S
{reset N=MP+A
- <A

Dual modulus prescaler ~P /P + 1

Divide by P + 1 for A cycles

Divide by P for M — A cycles

Fullcycle= (P +1)A+P(M —A)=MP +A

Only the dual modulus prescaler running at full speed
Programmability using M and A
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