Phase Noise in Oscillators

V.Vasudevan, Department of Electrical Engineering, Indian Institute of Technology Madras

(日) (同) (日) (日)

Oscillator Spectrum

- Ideally, it should be one or more delta functions
- The actual spectrum shows a non-zero width
- Close to the oscillation frequency, the PSD decreases as $(1/\Delta f)^3$ and later $(1/\Delta f)^2$
- Phase noise (dBc/Hz) is defined as

$$\mathcal{L}(\Delta f) = log\left(rac{S_v(f_o + \Delta f)}{P_s}
ight)$$

where P_s is the total power at the fundamental frequency, $S_v(f_o + \Delta f)$ is the single sided PSD at a frequency offset Δf .

 Occurs because device noise changes the zero crossings of the signal

Linear time-invariant model

▶ In a high *Q* parallel LC oscillator,

$$egin{aligned} Z(\omega) &= rac{j\omega L}{1-\omega^2 L C + (j\omega L/R)} \ Z(\omega_o+\Delta\omega) &pprox rac{-jR\omega_o}{2Q\Delta\omega} \end{aligned}$$

> The output noise spectral density due to resistor noise is

$$\bar{V_n}^2 = 4kTR\left(\frac{\omega_o}{2Q\Delta\omega}\right)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Leeson's model

For the LC oscillator

$$\mathcal{L}(\Delta \omega) = 10 log \left[rac{2kT}{P_{sig}} \left(rac{\omega_o}{2Q\Delta \omega}
ight)^2
ight]$$

Leeson's model includes flicker noise

$$\mathcal{L}(\Delta\omega) = 10 \log \left[\frac{2FkT}{P_{sig}} \left\{ 1 + \left(\frac{\omega_o}{2Q\Delta\omega} \right)^2 \right\} \left(1 + \frac{\Delta\omega_c}{(\Delta\omega)^3} \right) \right]$$

F is an "effective noise figure" for the oscillatorIt is not a predictive model

Feedback oscillator

The transfer function is given as

$$\frac{Y}{X} = \frac{H(j\omega)}{1 + H(j\omega)}$$

For $\omega = \omega_o + \Delta \omega$

$$H(j\omega) = H(j\omega_o) + \Delta\omega rac{dH}{d\omega}$$

• At the frequency of oscillation $H(j\omega_o) = -1$ Therefore

$$|Y/X|^2 = \frac{1}{(\Delta\omega)^2 |\frac{dH}{d\omega}|^2}$$

► For white noise input, the PSD will decrease as $(1/\Delta f)^2$ and for flicker noise, it will go as $(1/\Delta f)^3$

Problems with the transfer function model

- Cannot explain how 1/f noise gets upconverted
- Actual phase noise is larger than predicted by the linear theory (factor "F" in Leesons model)

Infinite power at the frequency of oscillation

Power Spectral density of noise in the phase

- The free running oscillator has amplitude stabilization, but no phase stabilization
- The output phase response to a voltage/current impulse can be modelled as a unit step. Therefore

$$\phi(t) \sim \int_{-\infty}^{\infty} u(t-\tau)v(\tau)d\tau = \int_{-\infty}^{t} n(\tau)d\tau$$
$$\Rightarrow S_{\phi}(f) \sim \frac{S_{n}(f)}{f^{2}}$$

► The output voltage is a periodic function of time. If the ideal output voltage is cos(ω₀t), the actual output V(t) is

$$V(t) = \cos(\omega_o t + \phi(t)) = \cos(\omega_o t)\cos(\phi(t)) - \sin(\omega_o t)\sin(\phi(t))$$

For small $\phi(t)$, the deviation from the ideal output is

$$V_n(t) = V(t) - cos(\omega_o t) \approx -\phi(t)sin(\omega_o t)$$

- Therefore the phase noise gets upconverted to the carrier frequency
- A variation of this model is the linear periodically time varying model, where the phase response is not just a unit step, but is periodic

These models explain how the flicker noise gets upconverted. But they still predict infinite power at the frequency of oscillation. Also $\phi(t)$ is not a small perturbation - it is a non-stationary process and the variance increases with time

Nonlinear model with white noise

A more exact nonlinear model in the presence of white noise sources gives the phase noise as

$$\mathcal{L}(f) = \frac{cf_o^2}{\pi^2 f_o^4 c^2 + (\Delta f)^2}$$

It is a Lorentzian spectrum

For Δf much larger than $\pi f_o^2 c$,

$$\mathcal{L}(f) = rac{cf_o^2}{(\Delta f)^2}$$

- The PSD is finite at the oscillation frequency
- c is a parameter that relates phase noise and timing jitter

Timing jitter

- ► If the zero crossings occur at times t_i, a k cycle jitter (J_k(t))is defined as the standard deviation of t_{i+k} t_i
- ► The period jitter is J₁(t), i.e. the standard deviation of t_{i+1} - t_i
- The free running oscillator has accumulating jitter and is basically a Weiner process (variance increases linearly with time). It is a nonstationary process.
- ► It can be shown that the standard deviation of the period jitter is \sqrt{cT} , where T is the time period of oscillation

References

- 1. K.Kundert, "Predicting the Phase noise and Jitter of PLL based frequency synthesizers", in www.designers-guide.org. This is a nice introduction to phase noise in oscillators and PLLs.
- D.B.Leeson, "A simple model of feedback oscillator spectrum", Proc. IEEE, vol-54, no.2, pp329-30, 1966
- 3. B.Razavi, "A study of phase noise in CMOS oscillators", IEEE J. solid state circuits, vol.31, no. 3, March 1996 (This has a transfer function based model)
- A.Hajimiri and T.Lee, "A General Theory of Phase Noise in Electrical Oscillators", IEEE J.Solid state circuits, vol.33, no.2, Feb 1998, pp 179-94 (Theory based on LPTV model for phase noise)
- A.Demir, A.Mehrotra and J.Roychowdhury, "Phase noise in oscillators: a unifying theory and numerical methods for chracterization", IEEE Trans. Circuits and Systems I, vol.47, no.5, May 2000 (Full nonlinear model)