EE6322: VLSI Broadband Communication Circuits Assignment 1

Nagendra Krishnapura (nagendra@iitm.ac.in), Saurabh Saxena

due on 14 Aug. 2016

- 1. Model the channel as a first order RC filter with 0.5 GHz bandwidth. Determine the delay between the input and output zero crossings for the following cases. All inputs are ideal rectangular waveforms between -1 and +1.
 - A 101010... pattern at 1 Gb/s
 - A 11001100... pattern at 1 Gb/s
 - A 1 GHz clock with 50% duty cycle. For this case, repeat the calculations if the channel bandwidth is 20% higher or lower than the nominal value above.

Determine the peak-peak value of the clock at the output of the channel for the nominal bandwidth.

- 2. A 1 Gb/s binary data has levels of ± 100 mV. Ideally the clock is placed in the middle of the bit interval. Determine the following. Both noise and jitter are zero mean Gaussians.
 - σ of the added noise for BER = 10^{-6} , 10^{-8} , 10^{-10} , 10^{-12} , 10^{-15} .
 - RMS jitter σ_{τ} so that the probability of the sampling instant moving outside the bit interval is 10^{-6} , 10^{-8} , 10^{-10} , 10^{-12} , 10^{-15} .
- 3. Plot the eye diagrams with for the following channels for -3 dB bandwidths of 0.5 GHz and 0.75 GHz. Assume that the input is random binary data with levels of ±1 at 1 Gb/s. Run the simulation for 1000 bits and remove the initial transients. For each of the channels, the pole locations for -3 dB bandwidth of 1 rad/s are given below. All zeros are at infinity. In each case, plot the eye diagram over a 2 bit interval and mark the horizontal and vertical eye openings (estimated by looking at the eye diagram).

	Туре	Poles (rad/s)
1	First order RC	-1
2	Fourth order Bessel	$-0.9952 \pm j1.2571$
		$-1.3701 \pm j0.4102$
3	Fourth order Butterworth	$-0.9239 \pm j0.3827$
		$-0.3827 \pm j0.9239$
4	Fourth order Chebyshev	$-0.3200 \pm j0.3869$
		$-0.1325 \pm j0.9341$

To do this problem, first you have to create the channel with appropriate poles and zeros. Brush up your filter frequency scaling and don't confuse Hz and rad/s. In MATLAB, the same filter can be represented with

zeros and poles, or numerator and denominator polynomials, or state-space matrices. Familiarize yourselves with zp2tf, tf2zp, tf2ss, ss2tf etc. You then have to generate a random bit pattern (see rand, randn), pass it through the channel (see lsim), and plot the eyediagram (see eyediagram). The signals are continuous-time, but for simulation, you have to sample them. In this case, since the simulations are simple and run quickly, you can use a large number of points, say 100, per bit interval. But, in more complicated cases, this may present a trade-off between simulation speed and accuracy and has to be chosen carefully. For tools other than MATLAB, you can find the equivalents for the above.