Exercise-1 (Objective Type)

- 1. State whether the following statement is true or false. "The efficiency of a switching regulator is always higher than that of a linear regulator."
 - (a) True
 - (b) False
- 2. State whether the following statement is true or false. "The temperature coefficient of the resistors used in a bandgap circuit must be zero so as to achieve a temperature-independent voltage reference."
 - (a) True
 - (b) False
- 3. State whether the following statement is true or false. "The curvature in the output voltage of a bandgap reference circuit occurs mainly due to the non-linearity in the CTAT current."
 - (a) True
 - (b) False
- 4. State whether the following statement is true or false. "Droop compensation can be used to improve the DC accuracy of a regulator."
 - (a) True
 - (b) False
- State whether the following statement is true or false. "Switching regulators offer high efficiency over a wide range of the conversion ratio V₀/V_{IN} because conduction losses do not depend on (V_{IN} - V₀)."
 - (a) True
 - (b) False
- 6. State whether the following statement is true or false. "Linear regulators with a high dropout voltage are efficient when the load current is small."
 - (a) True
 - (b) False
- 7. State whether the following statement is true or false. "Linear regulators are preferred over switching regulators for noise-sensitive applications."
 - (a) True
 - (b) False
- State whether the following statement is true or false. "The total power loss in a switching regulator operating at an efficiency of 93% with V_{IN} = 1.8 V, V_O = 1.6 V and delivering a load current of 1 A is 200 mW."
 - (a) True
 - (b) False

- 9. State whether the following statement is true or false. "Droop compensation calls for the output to be regulated slightly below the required value at full load."
 - (a) True
 - (b) False
- 10. A power management module comprises two regulators with the following specifications. Both regulators operate from a common supply voltage of 1.8 V.

Regulator 1: Linear, V₀ = 1.2 V, I_{LOAD} = 100 mA, η = 66.6%

Regulator 2: Switching, $V_0 = 1.6 \text{ V}$, $I_{LOAD} = 1 \text{ A}$, $\eta = 90\%$

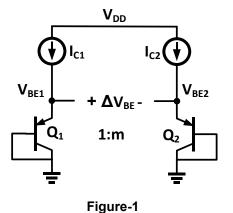
Fill in the blank with a numerical answer: The total efficiency of the above power management module is $\eta = ___ \%$ (up to 2 decimal places).

Exercise-2

Three systems are powered through a common supply of 3V. Specification of the systems are as follows:

System 1: V_{IN} = 2.8V, I_{LOAD} = 1.5A

System 2: VIN = 2.4V, ILOAD = 1A


System 3: V_{IN} = 2.1V, I_{LOAD} = 1A

Linear and switching regulators are used to supply power to these systems through the supply of 3V. Efficiency of switching regulator is 90%. Switching regulators cost 5 times more than the linear regulator.

- (a) Find the most energy efficient way these systems can be powered using linear and switching regulators.
- (b) Find the least energy efficient way these systems can be powered using linear and switching regulators. (Note: Don't use more than three regulators in this case)
- (c) Find the most cost effective way these systems can be powered using linear and switching regulators while keeping the overall efficiency over 85%.

Exercise-3

Figure-1 shows the conceptual circuit of a PTAT voltage reference:

a) Assuming Q1 and Q2 identical (m=1) and I_{C1}=10μA, I_{C2}=1μA, plot |V_{BE1}|, |V_{BE2}| and |ΔV_{BE}| w.r.t. Temperature from -40°C to 120°C. What is the temperature coefficients (dV/dT) for the three voltages? Plot the temperature coefficients w.r.t. temperature and comment on non-linearity if there is any.

b) Assuming Q1 and Q2 non-identical with m=10 and I_{C1}=I_{C2}=10µA, plot |ΔV_{BE}| w.r.t. Temperature from -40°C to 120°C. What is the temperature coefficients (dV/dT) for |ΔV_{BE}|? Plot the temperature coefficients w.r.t. temperature and compare with |dV_{BE}|/dT plotted in (a).

Exercise-4

Figure-2 shows a standard 1.2V bandgap voltage reference.

- a) Find the values of R_{1a}, R_{1b} and R₂ for m=10, I_C=10µA and plot V_{BG} w.r.t. Temperature from -40°C to 120°C.
- b) Analyze the effect of mismatch between R_{1a} and R_{1b}.
- c) Analyze the effect of op-amp offset voltage and compare for m=5 and m=10.

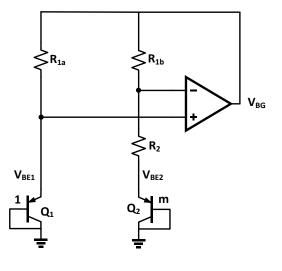


Figure-2

Note:

- 1. Circuit should be analyzed and plotted on simulator LTSpice.
- 2. Use transistor models of 0.18µm CMOS process technology for all the devices. If size of bipolar can't be changed in the parameter then use multiple devices in parallel.
- 3. Model files for different CMOS technologies can be found at:
- 4. <u>http://www.ee.iitm.ac.in/~nagendra/cadinfo.html</u>
- 5. Behavioral model can be used for op-amp with realistic parameters (Gain, BW, offset etc.)
- 6. Report should be submitted to TAs over email (no hard copy submission) and must contain all the simulation results, calculations, derivations and parameter values.