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DC-DC Converter Wish List

= High Power Density Complete 5 A

solution < 180 mm?

— Higher efficiency to reduce heat
dissipation

— Smaller passive components to reduce
board space

— Shrinking die size by innovative
controller and integrating more features
on single PMIC

Output
Voltage

= Stable Supply — ,_|

Current

— High performance controller design Tie
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Technology Trends in PMIC

* Scaling semiconductor process e T
technology 'L
* Higher speed Power FETs (_n+ J:’L" L J
= Smaller Size z

0.5um - 0.35um > 0.18um

» Low parasitic packaging technologies
(WLP, BGA)

= Smaller Parasitic

or w @SC‘ @QF@ = WLPO
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PMIC vs Passive Size
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Source: Techinsights Inc.

Samsung Galaxy S8

External Passive components (L and C) occupy 2/3™ of the total
power module size
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Passive Size Reduction

= Qutput rippleis a function of inductor (L), capacitor (C) and
switching frequency (Fy,)

. _VinD(1-D)

e 8F3wLCo

= Doubling switching frequency reduces passive components
by 4x for the same output ripple

L
Vsw

AN Co

1 1
I Output Ripple: AV, oc — ——
- p pp o 2L,

Vo Zo Fsw=1MHz Fsw=4MHz
eaEmm——

Source: Micrel F3W=8M Hz

Increasing Fsy ——p»
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Limitations of Analog Controller

= PID Compensator

vV, — Area/power inefficient
Voltage-to-Time Conversion IN
{ A AnalogPUM j Me v = Error Amplifier (EA)
EVRAMP 1| Gat 0 . .. .
: | priver | Vs — Bandwidth limits transient

response

= Ramp Generator

— Limits switching frequency

= PWM Comparator

— Delay limits output range
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Limitations of Analog Controller

= PID Compensator

vV, — Area/power inefficient
Voltage-to-Time Conversion IN
{" AN Ansiog P ", e = Error Amplifier (EA)
EVRAMP 1| Gate \V Vo . P .
: | Driver sw — Bandwidth limits transient

response

= Ramp Generator

— Limits switching frequency

= PWM Comparator

— Delay limits output range

Significant power penalty at high Fgy,
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Digital Controller Design Challenges

= Small controller area at low
Fsw

T Digital W Y
.

= Non-linear loop dynamics

— Steady state is a bounded limit
cycle = large ripple

I
VPWM | G?te
Driver

s A = ADCres. > reg. accuracy
— 0.1% accuracy = 10bit

= DPWM res. = inverter delay

— Large area and power

PID Compensator ll " FCLK >> FSW
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Digital Controller Design Challenges

= Small controller area at low
Fsw

= Non-linear loop dynamics

— Steady state is a bounded limit
cycle = large ripple

VPWM | Gate
Driver

s A = ADCres. > reg. accuracy
— 0.1% accuracy = 10bit

= DPWM res. =~ inverter delay

— Large area and power

PID Compensator II " FCLK >> FSW

Significant power & area penalty at high Fgy,
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Time Based Controlled DC-DC Converter

5() Ve, | Voltage-to-Time | 1L T;T;E;’:i’:;" Vewm Sate
{ Conversion foom | e | river
VRer / \
v
Voltage is directly Processing is done in Since resultant output is Time, it
converted into Time Time Domain

doesn’t require any PWM modulator

= Preserves benefits of both analog (low power, high
accuracy) and digital (process scaling, low voltage operation,
area efficient) without using any A/D or error amplifier

= Implicit PWM generation = Eliminates PWM modulator
hence minimum delay
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Time Based Controlled DC-DC Converter

Power and area efficient

Ve | voitage-to-Time [ L T;T:CE:::;" Vewm | cate
Conversion Driver
T foom | i [ TUL

Lo T

Voltage is directly Processing is done in Since resultant output is Time, it
converted into Time Time Domain doesn’t require any PWM modulator

A

= Preserves benefits of both analog (low power, high
accuracy) and digital (process scaling, low voltage operation,
area efficient) without using any A/D or error amplifier

= Implicit PWM generation = Eliminates PWM modulator
hence minimum delay
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VCO as Time-based Integrator

Vo~ [Hycols)|
M Doyt Y

VCO
wues = Kvco
d®oyr
woyr = VinKyco Wour = g
Kvco
Dour(s) Kyco .
Hyco(s) = = Frequency
Vin(s) s
VCO acts as an ideal V-to-® integrator
VGS EE5325 Power Management Integrated Circuits 12
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VCO Behavior in Time Domain

V-to-® ®-to-D
Vinof——1—7"" b T
3 |—l£°—l£°—l$°-r—‘* PD [—05Dour
5 P nn
i ..veo i i OCLKe

t

q)Do”T_(DCLKREF = Kveo .I(.) Vin(@) dr Vin —l

Doyr = -

CLKvco

Kyco (*
Doyt = - Vin() dt
0

Dour ” ” |||||||||
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Example of Phase Accumulation

fo =10MHz (free running
frequency of VCO)

Or w, = 2 -10MHz
Kyco=2nMrad/s/V

Then phase difference will
become 2 every 10t cycle of
the clock

ST O T A A A T A A W A

0 02 04 06 08 T

\
Time/uSecs \

Phase difference
becomes 21T

1.2

14
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Opamp-RC vs Time Based Integrator

Voltage Based Integrator Time Based Integrator
* Input voltage is integrated as = Input voltage is integrated as phase
voltage (time) by VCO
* Integral Gain = 1/RC ® Integral Gain = Ky,
vCo

o} V, (: ) CLKorre
it IN
It

R PD [ L°:fitp assloVour
VIN oAM— - Vrer CLKrer It liter
o Vour - ( ) Ininl
VREF + vco
VIN
Vrer
Vin fi > frgr f < f
-] [ 1> frer f2 < frer
VRer f, f, f,

Clkerns M MM ML

Clkwer frer [ ML
VOUT/\/ - e

AL o I e Y s O B
Vour /\/
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Buck w/ Time-based Type-l Controller

Fico Vin @REFJ: | |_
JuL Vewn L Vo (DCTRL_l i _| :

A

Vv ® PD | JIIL
REF REF — (3 |
D T = OI Vewm ION TOFF‘ Ton
RVCO - “om
= Acts as a Frequency Locked Loop, FLL
= |n steady state: fFVCO= fRVCO VO = VREF =D- VIN
Ton (Pcrre—Prer) Vo
D - —_ —_
Ton +Torr 2. Vin
VGS EE5325 Power Management Integrated Circuits 16
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Time Based PID Controller

HPID(S) = Kp +%+KDS

Need 3 functions to realize time based PID
compensator:

1. Time based Integrator > VCO
2. Time based Proportional (Gain) 2> ?

3. Time based Differentiator > ?

EE5325 Power Management Integrated Circuits
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Time-based Proportional Control

V|N B
H s
i~ Dour | V(‘Z‘DL( )l
CLKrer \_
VCDL
— KVCDL
DPoyr = Ocrkger T Kvepr - Vin
o
Doyr(s) _
Hycpp(s) = Ve Kyepi Frequency

VCDL acts as an ideal V-to-® converter
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Time-based Differentiator

ViN ?D Vo
Rp Doyt | HD:TF(S) |
CLKrer =
VCDL
Doyt = Ccrkger T+ KvepiRpCp dt 1
KVCDLRDCD
Goyr(s)
Hpoon(s) = 22Tk Rochs| -
pirr(S) 0 veprRpCp Frequency

H.P. filter + VCDL acts as an ideal V-to-® differentiator
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Buck Converter with T-PID Controller

CD-L Rp
FVCO  vCDL1 VCDL2
CTRL
@JUL JUL JuL

| @ P 940 D O+0p+dp
VRer
Drer
D_@ I
RVCO

* Integral gain = K, of FVCO
* Proportional gain = K, of VCDL,
* Derivative gain = R,C, and K, of VCDL,
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Mapping V-PID to T-PID (1)
(e I
e | R,
: _|C1 R, R i where, G = R—1
C: Ry
Verru w'—ov s s
H O A+5 0045,
i | H'pip(s) =G -wyy 5
! PID Compensator | s(1+—)
N R w,
Ignoring w, and simplifying
W,1 1 1
HY =6¢-{l1 z -
pip(S) {( + wﬂ) +Wa 3 + . S}
Comparing with standard Hp;p(s) = Kp + % + Kps
W, G
K'p=G-[1+—2 vV — G- KV, ——
P < sz) K'j=6G-wy D=
EE5325 P M t Integrated Circuit 21
VGS Integrated Circuitso xerys?:r:sg 2:23:, D:pa‘?r?r!r':zn(te of EIIErcIT'I! l\jadras
Mapping V-PID to T-PID (1)
(e I
il . R,
i ’_|C1 R, Ry E where, G = R_1
C: Ry
VCTRL: — : Ves S s
1+—A+—
0_"‘REF ( +w21)( +w22)

]
| H pip(s) =G -wyy
]

Ignoring w, and simplifying

v _ . Ww,1 1 1
H PID(S) =G 1+ -+ W,1 -+ S
S Wy,

s
s(1+—
(1+3-)

W22

Comparing with standard Hp;p(s) = Kp + % + Kps

W, G
KVP=G‘<1+ Z) KVI=G'W21 KVD=_
T Wi2 T T Wz2
Proportional Integral Derivative
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Mapping V-PID to T-PID (2)

W,q 1 1
+ W, — + S
W2 S Wy

HVPID(S) =G- {(1 +

VFB B

1
H'p;p(s) = Kycpr1 + cho; + Kycpr2RpCps

T _
K"p = Kycpr, K" = Kyco K"p = Kycpr,RpCp
w31 V. _ G
K'p=6-1+ K' =G 0w, K'p =
w2 Oy}
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T-PID Transfer Function

TPID Compensator Hrpip(s)

A 20dB/dec

V.
i prﬂ Vin _SKHLC(S) Vo
2n

Phase Driver LC Filter _904

T
'
1
'
KyepisRpCos '
KyeprRoCps '
'
'
!

1+R,Cps D Detector Wz‘w Wz2 We w(radys)
1 1 1 1
Kyco =K, Kyepu K{ -t KVCDLZ_R C
Wy W, ptp Wi W
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Circuit Implementation

VREF

R
RFB1§ FB2
= Rp
—
Co Vo

D
VIN

VCDL- vCo.

= Phase detector is implemented with SR latch
= Fully differential control eliminates reference clock
= Shared VCDL for proportional and derivative control
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Prototype Buck Converter in 180nm CMOS

Gate Driver &
Power FETs

450pm

omm —]

“A 10-25 MHz, 600 mA buck converter using time-based PID compensator with 2uA/MHz quiescent
current, 94% peak efficiency, and 1MHz BW,” Symposium on VLSI Circuits (VLSIC), June 2014.

"High frequency buck converter design using time-based control techniques," IEEE JSSC, Apr. 2015.

EE5325 Power Management Integrated Circuits 26

Integrated Circuits and Systems Group, Department of EE, |IT Madras

11/7/2019

13



11/7/2019

Steady-State Waveforms (Vc_, =1V)

200v/ @ 2.00v/ @ 200v/ @ 5000/ 5 00s  50.00%/

A
= To = )
Vo=1V D= =58.2%
2m Tsw
oY |<—>| Vewm
i, ey Pty \ ool s M:_.M.J..A.A‘ ’,\ A e
‘ ‘ \ Tore | H‘ [ \ ( |
a Lonhaten) \ lm%-\.J Yy g 1
' Vvco+
1\ jmm \~ Ffmu\g-. N\A w-um.
11— \-\/Mfm M\w\ﬂf *\,—»w/
; cho-
s i (i D kv Wi\ ey [ My i,
/ | | |
( ‘0 \ { | [ \ | \
» W . - ) Lokl
:ﬁ!u-m WSy’ el Ve W e Wit
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Load Transient Response
! 1007/ @ 5.00v/ s+ 26008 20008 Stop £ W
Vv A —_— Vov=65mV
a0 1| VO NS S S W “\,._t_ﬁ___ﬂ.____. N
M 11
Vyn=60mV _¥_| S e \
Ts=3.5pus
100mV | F:-:‘zr:ﬂ"l:‘":::"f""‘“ 4 S0E_S000w Sws i W
20ps
lLoaD -"" i I o
o 500"'»‘\ V,,pp.e-S 5mV 2mv {
L. L _ 50ns
ey - i Vewm
100mA J
‘iv
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Oscillator Frequency Spectra

Mkr1 10.977 27 MHz|
{2 daidiv Ref 15.00 dBm -4.85 dBm

st = 11MHZ

e il L
Closed Loop Fyco. | Closed Loop Fyco.

Center 10.9775 MHz

Span 500.0 kHz
#Res BW 100 Hz VBW 100 Hz Sweep 1.91 s (10000 pts)

CS
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Efficiency vs. Output Current

100
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§
= 85
e
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0
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T, -O- Fsw=11MHz@Vo=1V
A Fsw=11MHz@V0=0.6V
70 4 - Fsw=11MHz@Vo0=1.4V ||
-O- Fsw=15MHz@Vo=1V
65 -O- Fsw=20MHz@Vo=1V
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60 : z z
100 200 300 400 500 600
Output Current [mA]
&R EE5325 Power Management Integrated Circuits 30
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Performance Summary

Publication ISSCC 2014 This Work
Voltage mode Time based
Control Loop PID PID
Process 0.13um CMOS 0.18um CMOS
Supply Voltage 3.3V 1.8V
Output Voltage 0.37V —2.85V 0.6V - 1.5V
Fsw 10MHz(30MHz) 11-15MHz
L/C 330nH/3.3pF(1uF) 220nH/4.7TuF
Max. Load Current 1.5A@V,=2.4V 600mA
Settling Time n/a 3.5us
Output Ripple n/a 3.5mV
Controller Current n/a 23pA@11MHz

Peak Efficiency

91.8%(86.6%)

94%@V=1V

Active Area

n/a

0.24mm?

EE5325 Power Management Integrated Circuits 31
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Application in Multi-Phase
= Since VCOs come inherently with multiple phases, different
phases from VCOs can be tapped
= All phases use common integrator (VCO) but separate VCDLs
RVCO
. )
$o
MULTI-PHASE
<1—\/\/‘l-ll—| TPID Controller )
EE5325 Power Management Integrated Circuits 32
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30-70MHz 4-Phase Time-Based Buck

e el
Process 65nm CMOS | 90nm CMOS | 0.5um CMOS | 22nm CMOS
Control T-PID PWM Hysteretic Hysteretic | Digital PWM
Synchronization MPG Injection DLL DPWM
Number of Phases 4 4 4 4
Input Supply [V] 1.8 1.211.4 4-5 15
Output Voltage [V] 0.6-1.5 0.9/1.1 0.86-3.93 1
Fsw[MHz] 30-70 233 25-70 500
Inductance [nH] 920 25 110-220 15
: H Capacitance [nF] 470 6.8 8-190 10
| 1mm | Load Current [A] 0.8 0.3/0.4 1 N/A
‘ ““\\W . Controller Current 90pA@30MHz| N/A N/A N/A
- z A Peak Efficiency [%] 87@Vo=1V | 83.2/845 | 83@Vo=3.3V | 68@Vo=1V
L Power Density [W/mm?] 2.5 1.93/3.14 1.2 N/A

Gate

Cascoded

Diver || Output Driver
nt D
e Gate Cascoded
Typodi Diver || Output Driver
e
Gate Cascoded
Diver || Output Driver

Cascoded
Output Driver

Gate
Phase Ctrl Diver

1mm

* A 1.8V 30-to-70MHz 87% Peak Efficiency 0.32mm2 4-Phase
Time-Based Buck Converter Consuming 3uA/MHz Quiescent
Current in 65nm CMOS, “ ISSCC-2015.

* A4-phase 30-70 MHz switching frequency buck converter
using a time-based compensator," IEEE JSSC, Dec. 2015

EE5325 Power Management Integrated Circuits
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Time-Based Low Drop-Out Regulator (LDO)
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Low Drop-Out Regulator

= A conventional low drop-out regulator (LDO) suffers from trade-off between
power and area.

= Pole, w,, worsens the situation particularly under light-load condition due to
high output resistance.

= Most of state-of-the art LDOs either consume high quiescent current, large on-
chip capacitance or achieve limited bandwidth.

* Reduced bandwidth degrades power supply rejection (PSR) and transient
response.

Pole = we, Pole = Wea_gate Pole = w,

VDD

VREF
O

vCS¢

35
Time-Based Error Amplifier
= Concept of time-based error amplifier is derived from type-ll
phase locked loop (PLL).
= A voltage-controlled oscillator (VCO) is used for voltage-to-
time/phase conversion which also acts as a phase integrator.
= Under lock condition, Feg=Fggr > Veg=Vger, assuming two VCOs
are identical.
Voltage-to-Time Time-to-Current
Conversion Conversion
; ) ’ Voo Kol (1+R,Cps)
veo ELS -[i-D Agy(s) = 27?)C:,P sz(l+1L€_,,g€,,.s)
Vrer I-to-V
REF!
rer UP| 1) Conversion
"FB»@J B (? %Rl =3 Ve @»
=y 3 | T
vco IR
\vco Integrator’ . PFD and Charge-Pump | E Loop Fihe’);
VGS 36
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Time-Based LDO

= Concept of time-based error amplifier can be extended to LDO by
adding a pass element, M; to drive the output load R_ and C,.

Apg B Kyco Icp (1 +w,.r)
21 - CLF 52 (1 + Wp_gate )(1 + Wp_out)

Hi(s) =

PFD and Charge-
VCO Integrator

. veo |

VRer | i

i‘bREFi
T pep

Veg! Y

: P UL

. veo ||

37
Time-Based LDO with FF Compensation
» Feed-forward compensation cancels one of the poles (w, . and
W, ou) and stabilizes the loop
Hys(s) = Apg "B Kyco “Iep (1 +w, 1r)(1 + W, 5r) B - Kyco " Icp
LG\S) = . w —
2m Cup s2(1+wp our ) z.FF 21 Gy
VCO PFD and Loop Filter with
Integrator __Charge-Pump __ Feed-Forward Gy
SN 3 1/— Vbp | }/, -\.
. Veo T |
VRer | ‘ 3 L Vee Vier!
3 i 1 o ' Vbp
| Prer; up | i
| Ry : : -
! ! {|PFD|pN w Mo 8
1 ‘ ‘ — 1 |8 €
VFL»@_'_E> P o o
‘ C L e i w
1 ] | ’E S T
! | i I o |
i VCO ! 3 = 1 3 i
M e ’ M e N e ’ VFB
Area and Current Efficient Capacitor-Less Low Drop-Out Regulator Using ﬁme-Based Error Amplifier,
ISCAS-2018, Florence, Italy, May, 2018.
38
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Multi-Phase Time-Based LDO

u
currents

= LowIQand

Phase
Selector

High BW

$errRLz—

$errLr—

Perrio

| i) v s
. Vig . 9 ot VFB_
& vCco
0‘.

Auto-Reconfigurable = numbers of phases are turned on/off based on load

Seamless transition between number of phases

PFD: Phase Frequency Detector  LF: Loop Filter
CP: Charge Pump PE: Pass Element

CS
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Issues with Time-Based Controller
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Problem-1: Cycle Slipping

= Since VCO phase folds back after every 2m, it causes duty
cycle to reset and losing the duty cycle lock

= Duty cycle slipping may cause instability in the output before
it acquires the phase lock again

2m Io_l AIO ¢
Bad transient caused
¢PWM

(rad) VO by cycle slip
0 2m pe e ' [ - /

dcrre (rad)

derre

1 / “.
S A O O O

b \‘ 7

Vewm F

n—.- Ssel tad
0 2m 41 et STem-oT

Perre (rad) PWM looses duty cycle

due to cycle slip

41

Solution: How to Avoid Duty Cycle Slip

= A cycle slip or min/max duty cycle detector can be used

= Once cycle slip is detected, error current to VCOs is made
zero by applying Vg to Vi

= VCO phase will not accumulate further when there is no
error

Duty Cycle Limit

D,
SFj o or Cycle Slip
Detector
SRE‘

TPID
Compensator

VREFC

JLCSE

42
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CSD Operation
Vout w/ CSD Eous .
: -
VourW/0o CSD _ 2us
>1V
Load Current 7
[
--n-J 100mA W Ltmm

43

Problem-2: Offset Due to VCO Mismatch

= Since any error between frequencies of two VCOs is integrated
in phase, mismatch in VCOs will cause offset in input voltage

* Considering 10MHz frequency and K|, of 1MHz/V, 1%
mismatch in VCO will introduce 100KHz offset in frequency

= Assuming offset frequency due to mismatch is 4f, ., absolute
input referred offset voltage can be represented as:
V _ AfVCO
os — K
vco
= 1% between VCOs causes 100mV offset which is 16.67% for
Veer=600mV.

CSEQ

44
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Solution: Offset Cancellation

= Mismatch between VCOs can be corrected by locking two VCOs
to same frequency during startup

= Digital FLL is used for frequency locking

= Any offset in Gm also gets corrected during the calibration

|
s

Digital FLL |

N:0]

CSE® .
Oscillator Frequency Spectra
10dBidiv Ref -1.95 dBm
‘
o Frvco
F
> RVCO
= I
Without FLL |
B
1
|
. _ _AF__ 5.347MHz _
Vooftset= Y 00 = 3oMAzv - 017V
Center 257.74 MHz ‘ Span 100.0 MHz
#Res BW 51 kHz VBW 51 kHz Sweep 148 ms (30000 pts)
VGS 46
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Oscillator Frequency Spectra

Log

Mkr1 257.694 MHz

CSEQ

10 By Ref 1.95 dBm -18.677 dBm
¥ Frvco= Fryco
With FLL |
FrLLRres _I 150KHz  _
Voofset < Ty -~ = ZomHzv ~ MV
Center 257.74 MHz I Span 100.0 MHz
#Res BW 51 kHz VBW 51 kHz Sweep 148 ms (30000 pts)
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