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DC-DC Converter Wish List
 High Power Density

– Higher efficiency to reduce heat 
dissipation

– Smaller passive components to reduce 
board space

– Shrinking die size by innovative 
controller and integrating more features 
on single PMIC

 Stable Supply
– High performance controller design
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Technology Trends in PMIC
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 Scaling semiconductor process 
technology 

 Higher speed Power FETs
 Smaller Size

 Low parasitic packaging technologies 
(WLP, BGA) 

 Smaller Parasitic 

SOP WLP
QFN

DIP

0.5µm  0.35µm  0.18µm
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PMIC vs Passive Size

4

Samsung Galaxy S8

External Passive components (L and C) occupy 2/3rd of the total 
power module size
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Passive Size Reduction
 Output ripple is a function of inductor (L), capacitor (C) and 

switching frequency (FSW)

 Doubling switching frequency reduces passive components 
by 4x for the same output ripple

OSW
O LCF

V
11

2


5EE5325 Power Management Integrated Circuits 
Integrated Circuits and Systems Group, Department of EE, IIT Madras 

Limitations of Analog Controller
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 PID Compensator

– Area/power inefficient

 Error Amplifier (EA)

– Bandwidth limits transient 
response

 Ramp Generator

– Limits switching frequency

 PWM Comparator

– Delay limits output range

EE5325 Power Management Integrated Circuits 
Integrated Circuits and Systems Group, Department of EE, IIT Madras 

6



11/7/2019

4

Limitations of Analog Controller

7

 PID Compensator

– Area/power inefficient

 Error Amplifier (EA)

– Bandwidth limits transient 
response

 Ramp Generator

– Limits switching frequency

 PWM Comparator

– Delay limits output range

Significant power penalty at high FSW
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Digital Controller Design Challenges

8

 Small controller area at low 
Fsw

 Non-linear loop dynamics
– Steady state is a bounded limit 

cycle  large ripple

 ADC res. > reg. accuracy
– 0.1% accuracy  10bit

 DPWM res.  inverter delay  
– Large area and power 

 FCLK >> FSW

1-z-1
1

-1z-1
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Digital Controller Design Challenges

9

 Small controller area at low 
Fsw

 Non-linear loop dynamics
– Steady state is a bounded limit 

cycle  large ripple

 ADC res. > reg. accuracy
– 0.1% accuracy  10bit

 DPWM res.  inverter delay  
– Large area and power 

 FCLK >> FSW

1-z-1
1

-1z-1

Significant power & area penalty at high FSW
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Time Based Controlled DC-DC Converter

10

 Preserves benefits of both analog (low power, high 
accuracy) and digital (process scaling, low voltage operation, 
area efficient) without using any A/D or error amplifier

 Implicit PWM generation  Eliminates PWM modulator 
hence minimum delay

Processing is done in 
Time Domain

Voltage is directly 
converted into Time

Since resultant output is Time, it 
doesn’t require any PWM modulator
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Time Based Controlled DC-DC Converter

11

 Preserves benefits of both analog (low power, high 
accuracy) and digital (process scaling, low voltage operation, 
area efficient) without using any A/D or error amplifier

 Implicit PWM generation  Eliminates PWM modulator 
hence minimum delay

Processing is done in 
Time Domain

Voltage is directly 
converted into Time

Since resultant output is Time, it 
doesn’t require any PWM modulator

Power and area efficient
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VCO as Time-based Integrator

𝝎𝑶𝑼𝑻 = 𝑽𝑰𝑵 𝑲𝑽𝑪𝑶 𝝎𝑶𝑼𝑻 =
𝒅𝑶𝑼𝑻

𝒅𝒕

𝑯𝑽𝑪𝑶 𝒔 =
𝑶𝑼𝑻(𝒔)

𝑽𝑰𝑵 𝒔
=

𝑲𝑽𝑪𝑶

𝒔
Frequency

KVCO

ωUGB = KVCO

HVCO(s)

VCO acts as an ideal V-to-Φ integrator
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VCO Behavior in Time Domain

𝑫𝑶𝑼𝑻ି𝑪𝑳𝑲𝑹𝑬𝑭
= 𝑲𝑽𝑪𝑶 න 𝑽𝑰𝑵 𝝉  𝒅𝝉

𝒕

𝟎

𝑫𝑶𝑼𝑻 =
𝑫𝑶𝑼𝑻

− 𝑪𝑳𝑲𝑹𝑬𝑭

𝟐𝝅

𝑫𝑶𝑼𝑻 =
𝑲𝑽𝑪𝑶

𝟐𝝅
න 𝑽𝑰𝑵 𝝉  𝒅𝝉

𝒕

𝟎
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Example of Phase Accumulation

𝒇𝒐 =10MHz (free running 
frequency of VCO)
Or 𝝎𝒐 = 𝟐𝝅 ȉ10MHz 
𝑲𝑽𝑪𝑶=𝟐𝝅Mrad/s/V

Then phase difference will 
become 𝟐𝝅 every 10th cycle of 
the clock

Phase difference 
becomes 2π
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Opamp-RC vs Time Based Integrator

15

Voltage Based Integrator
 Input voltage is integrated as 

voltage
 Integral Gain = 1/RC

Time Based Integrator
 Input voltage is integrated as phase 

(time) by VCO
 Integral Gain = KVCO
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Buck w/ Time-based Type-I Controller
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Time Based PID Controller

17

Need 3 functions to realize time based PID 
compensator:

1. Time based Integrator  VCO

2. Time based Proportional (Gain)  ?

3. Time based Differentiator  ?
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Time-based Proportional Control

18

VCDL acts as an ideal V-to-Φ converter

Frequency

HVCDL(s)

KVCDL
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Time-based Differentiator

19

H.P. filter + VCDL acts as an ideal V-to-Φ differentiator

Frequency

HDIFF(s)

KVCDLRDCD

1
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Buck Converter with T-PID Controller

20

• Integral gain  KVCO of FVCO 

• Proportional gain  KVCDL of VCDL1

• Derivative gain  RDCD and KVCDL of VCDL2
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Mapping V-PID to T-PID (1)

21

VCTRL

VREF

R1

PID Compensator

C3

R2C1

C2

EA

R3
VFB

Ignoring wp and simplifying
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Mapping V-PID to T-PID (1)

22

VCTRL

VREF

R1

PID Compensator

C3

R2C1

C2

EA

R3
VFB

Ignoring wp and simplifying

Proportional Integral Derivative

EE5325 Power Management Integrated Circuits 
Integrated Circuits and Systems Group, Department of EE, IIT Madras 

22



11/7/2019

12

Mapping V-PID to T-PID (2)

23EE5325 Power Management Integrated Circuits 
Integrated Circuits and Systems Group, Department of EE, IIT Madras 

23

T-PID Transfer Function

sCR
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DD

DDVCDL

1
2

s

K VCO

1VCDLK

2

1
)(sHLC

DD
P CR
w

1


IVCO KK  









21
1

11

zz
IVCDL ww

KK
21

2

11

zzDD
VCDL wwCR

K




; 

;

24EE5325 Power Management Integrated Circuits 
Integrated Circuits and Systems Group, Department of EE, IIT Madras 



11/7/2019

13

Circuit Implementation

25

 Phase detector is implemented with SR latch
 Fully differential control eliminates reference clock
 Shared VCDL for proportional and derivative control

D
E

A
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T

IM
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L

O
G

IC
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Prototype Buck Converter in 180nm CMOS

26

• “A 10–25 MHz, 600 mA buck converter using time-based PID compensator with 2µA/MHz quiescent
current, 94% peak efficiency, and 1MHz BW,” Symposium on VLSI Circuits (VLSIC), June 2014.

• "High frequency buck converter design using time-based control techniques," IEEE JSSC, Apr. 2015.
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Steady-State Waveforms (VO = 1V)
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Load Transient Response
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Oscillator Frequency Spectra
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Efficiency vs. Output Current

30
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Fsw=11MHz@Vo=1V
Fsw=11MHz@Vo=0.6V
Fsw=11MHz@Vo=1.4V
Fsw=15MHz@Vo=1V
Fsw=20MHz@Vo=1V
Fsw=25MHz@Vo=1V
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Performance Summary

31

Publication ISSCC 2014 This Work

Control Loop
Voltage mode

PID
Time based

PID

Process 0.13µm CMOS 0.18µm CMOS

Supply Voltage 3.3V 1.8V

Output Voltage 0.37V – 2.85V 0.6V – 1.5V

FSW 10MHz(30MHz) 11-15MHz

L / C 330nH/3.3µF(1uF) 220nH/4.7µF

Max. Load Current 1.5A@VO=2.4V 600mA

Settling Time n/a 3.5µs

Output Ripple n/a 3.5mV

Controller Current n/a 23µA@11MHz

Peak Efficiency 91.8%(86.6%) 94%@VO=1V

Active Area n/a 0.24mm2
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 Since VCOs come inherently with multiple phases, different 
phases from VCOs can be tapped

 All phases use common integrator (VCO) but separate VCDLs

Application in Multi-Phase
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30-70MHz 4-Phase Time-Based Buck
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• A 1.8V 30-to-70MHz 87% Peak Efficiency 0.32mm2 4-Phase 
Time-Based Buck Converter Consuming 3uA/MHz Quiescent 
Current in 65nm CMOS, “ ISSCC-2015.

• A 4-phase 30-70 MHz switching frequency buck converter 
using a time-based compensator," IEEE JSSC, Dec. 2015
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Time-Based Low Drop-Out Regulator (LDO)
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Low Drop-Out Regulator
 A conventional low drop-out regulator (LDO) suffers from trade-off between

power and area.

 Pole, wo, worsens the situation particularly under light-load condition due to
high output resistance.

 Most of state-of-the art LDOs either consume high quiescent current, large on-
chip capacitance or achieve limited bandwidth.

 Reduced bandwidth degrades power supply rejection (PSR) and transient
response.

AEA

CO

VDD

RLOAD

VO

VREF

VFB

MP

RFB1

RFB2

Error 
Amplifier

VGATE

CGATE

Pole = wea_gatePole = wea Pole = wo
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Time-Based Error Amplifier
 Concept of time-based error amplifier is derived from type-II

phase locked loop (PLL).

 A voltage-controlled oscillator (VCO) is used for voltage-to-
time/phase conversion which also acts as a phase integrator.

 Under lock condition, FFB=FREF  VFB=VREF, assuming two VCOs
are identical.

ɸFB

PFD
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Time-Based LDO
 Concept of time-based error amplifier can be extended to LDO by

adding a pass element, MP to drive the output load RL and CL.

ɸFB

PFD

VDD 
UP

VCO
VREF

ɸREF

RLF

CLF

DN

ICP

ICP

VDD 

VO 

RFB1

RFB2VFBVCO

VFB

VCO Integrator
PFD and Charge-
Pump

RL CL

CG

MP

Loop
Filter

wp_gate=1/RLFCG

Pole=wp_out=1/RLCL

𝐻𝐿𝐺 (𝑠) =
𝐴𝑃𝐸 ∙ 𝛽 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝐼𝐶𝑃

2𝜋 ∙ 𝐶𝐿𝐹

∙
൫1 + 𝑤𝑧_𝐿𝐹 ൯

𝑠2൫1 + 𝑤𝑝 _𝑔𝑎𝑡𝑒 ൯൫1 + 𝑤𝑝_𝑜𝑢𝑡 ൯
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Time-Based LDO with FF Compensation
 Feed-forward compensation cancels one of the poles (wp_gate and

wp_out) and stabilizes the loop
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𝐻𝐿𝐺 (𝑠) =
𝐴𝑃𝐸 ∙ 𝛽 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝐼𝐶𝑃

2𝜋 ∙ 𝐶𝐿𝐹
∙

൫1 + 𝑤𝑧_𝐿𝐹൯൫1 + 𝑤𝑧_𝐹𝐹൯

𝑠2൫1 + 𝑤𝑝_𝑜𝑢𝑡 ൯
 𝑤𝑧_𝐹𝐹 =

𝛽 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝐼𝐶𝑃

2𝜋 ∙ 𝐺𝑚𝑧

 

Area and Current Efficient Capacitor-Less Low Drop-Out Regulator Using Time-Based Error Amplifier,
ISCAS-2018, Florence, Italy, May, 2018.
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Multi-Phase Time-Based LDO
 Auto-Reconfigurable  numbers of phases are turned on/off based on load 

currents
 Seamless transition between number of phases

 Low IQ and High BW

PFD

PFD

PFD
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PFD: Phase Frequency Detector
CP: Charge Pump

LF: Loop Filter
PE: Pass Element
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Issues with Time-Based Controller
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 Since VCO phase folds back after every 2π, it causes duty 
cycle to reset and losing the duty cycle lock

 Duty cycle slipping may cause instability in the output before 
it acquires the phase lock again

Problem-1: Cycle Slipping

ɸPWM 

(rad)

0 4π 6π

2π

2π

D

0 4π 6π

1

ɸCTRL (rad)
2π

ɸCTRL (rad)
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 A cycle slip or min/max duty cycle detector can be used

 Once cycle slip is detected, error current to VCOs is made 
zero by applying VREF to VFB

 VCO phase will not accumulate further when there is no 
error

Solution: How to Avoid Duty Cycle Slip

ɸCTRL
TPID

Compensator

RFB1RFB2

VO CO
L

VSW

SP

SN

VIN

off-chip

VFB

ɸREF

VPWM

VREF

SR

SF
DLIM Duty Cycle Limit 

or Cycle Slip 
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PD
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CSD Operation

Load Current
500mA

100mA

VOUT w/ CSD

2µs

> 1V

VOUT w/o CSD
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 Since any error between frequencies of two VCOs is integrated 
in phase, mismatch in VCOs will cause offset in input voltage

 Considering 10MHz frequency and KVCO of 1MHz/V, 1% 
mismatch in VCO will introduce 100KHz offset in frequency

 Assuming offset frequency due to mismatch is ΔfVCO, absolute 
input referred offset voltage can be represented as:

 1% between VCOs causes 100mV offset which is 16.67% for 
VREF=600mV.

Problem-2: Offset Due to VCO Mismatch

VCO

VCO
OS K

f
V



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 Mismatch between VCOs can be corrected by locking two VCOs 
to same frequency during startup

 Digital FLL is used for frequency locking 
 Any offset in Gm also gets corrected during the calibration

Solution: Offset Cancellation

45

Oscillator Frequency Spectra

Without FLL

FRVCO

FFVCO

Vo,offset =
F

KVCO

5.347MHz
30MHz/V

= = 0.17V
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Oscillator Frequency Spectra

With FLL

FRVCOFFVCO

Vo,offset ≤ 
FFLL,RES

=
KVCO

150KHz
30MHz/V

= 5mV
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