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DC-DC Converter Wish List

 High Power Density
– Higher efficiency to reduce heat 

dissipation

– Smaller passive components to reduce 
board space

– Shrinking die size by innovative 
controller and integrating more features 
on single PMIC

 Stable Supply
– High performance controller design
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Technology Trends in PMIC
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 Scaling semiconductor process 
technology 

 Higher speed Power FETs

 Smaller Size

 Low parasitic packaging technologies 
(WLP, BGA) 

 Smaller Parasitic 

SOP WLP
QFN

DIP

0.5µm  0.35µm  0.18µm
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Power 
Management 
Module

Source: TechInsights Inc.
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PMIC vs Passive Size

4

Samsung Galaxy S8

External Passive components (L and C) occupy 2/3rd of the total 
power module size
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Passive Size Reduction

 Output ripple is a function of inductor (L), capacitor (C) and 
switching frequency (FSW)

 Doubling switching frequency reduces passive components 
by 4x for the same output ripple

PMIC PMIC PMIC

Increasing FSW

Source: Micrel
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Limitations of Analog Controller

6

 PID Compensator

– Area/power inefficient

 Error Amplifier (EA)

– Bandwidth limits transient 
response

 Ramp Generator

– Limits switching frequency

 PWM Comparator

– Delay limits output range
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Limitations of Analog Controller

7

 PID Compensator

– Area/power inefficient

 Error Amplifier (EA)

– Bandwidth limits transient 
response

 Ramp Generator

– Limits switching frequency

 PWM Comparator

– Delay limits output range

Significant power penalty at high FSW
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Digital Controller Design Challenges

8

 Small controller area at low 
Fsw

 Non-linear loop dynamics
– Steady state is a bounded limit 

cycle  large ripple

 ADC res. > reg. accuracy

– 0.1% accuracy  10bit

 DPWM res.  inverter delay  
– Large area and power 

 FCLK >> FSW
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Digital Controller Design Challenges

9

 Small controller area at low 
Fsw

 Non-linear loop dynamics
– Steady state is a bounded limit 

cycle  large ripple

 ADC res. > reg. accuracy
– 0.1% accuracy  10bit

 DPWM res.  inverter delay  
– Large area and power 

 FCLK >> FSW
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Significant power & area penalty at high FSW
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Time Based Controlled DC-DC Converter

10

 Preserves benefits of both analog (low power, high 
accuracy) and digital (process scaling, low voltage operation, 
area efficient) without using any A/D or error amplifier

 Implicit PWM generation  Eliminates PWM modulator 
hence minimum delay
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Since resultant output is Time, it 

doesn’t require any PWM modulator
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Time Based Controlled DC-DC Converter

11

 Preserves benefits of both analog (low power, high 
accuracy) and digital (process scaling, low voltage operation, 
area efficient) without using any A/D or error amplifier

 Implicit PWM generation  Eliminates PWM modulator 
hence minimum delay
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Time Domain

Voltage is directly 

converted into Time
Since resultant output is Time, it 

doesn’t require any PWM modulator

Power and area efficient
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VCO as Time-based Integrator

𝝎𝑶𝑼𝑻 = 𝑽𝑰𝑵𝑲𝑽𝑪𝑶 𝝎𝑶𝑼𝑻 =
𝒅𝑶𝑼𝑻
𝒅𝒕

𝑯𝑽𝑪𝑶 𝒔 =
𝑶𝑼𝑻(𝒔)

𝑽𝑰𝑵 𝒔
=
𝑲𝑽𝑪𝑶
𝒔

VIN
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Frequency

KVCO

ωUGB = KVCO

HVCO(s)

VCO acts as an ideal V-to-Φ integrator
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VCO Behavior in Time Domain

𝑫𝑶𝑼𝑻−𝑪𝑳𝑲𝑹𝑬𝑭
= 𝑲𝑽𝑪𝑶 

𝟎

𝒕

𝑽𝑰𝑵 𝝉 𝒅𝝉

𝑫𝑶𝑼𝑻 =
𝑫𝑶𝑼𝑻 − 𝑪𝑳𝑲𝑹𝑬𝑭
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Example of Phase Accumulation

𝒇𝒐 =10MHz (free running 

frequency of VCO)

Or 𝝎𝒐 = 𝟐𝝅 ∙10MHz 

𝑲𝑽𝑪𝑶=𝟐𝝅Mrad/s/V

Then phase difference will 

become 𝟐𝝅 every 10th cycle of 

the clock

PD

CLKREF

DOUT

V-to- -to-D

VCO

VIN
CLKVCO

Phase difference 
becomes 2π
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Opamp-RC vs Time Based Integrator

15

Voltage Based Integrator
 Input voltage is integrated as 

voltage

 Integral Gain = 1/RC

Time Based Integrator
 Input voltage is integrated as phase 

(time) by VCO

 Integral Gain = KVCO
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Buck w/ Time-based Type-I Controller

16

FVCO

L VO

CO

VPWM

PD

VIN

VREF

RVCO

TONVPWM

CTRL

REF

CTRL

REF

2π  

TOFF TON

EE5325 Power Management Integrated Circuits 
Integrated Circuits and Systems Group, Department of EE, IIT Madras 

16



11/9/2018

9

Time Based PID Controller

17

Need 3 functions to realize time based PID 
compensator:

1. Time based Integrator  VCO

2. Time based Proportional (Gain)  ?

3. Time based Differentiator  ?
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Time-based Proportional Control

18

VCDL acts as an ideal V-to-Φ converter
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Time-based Differentiator

19

H.P. filter + VCDL acts as an ideal V-to-Φ differentiator
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Buck Converter with T-PID Controller

20

• Integral gain  KVCO of FVCO 

• Proportional gain  KVCDL of VCDL1

• Derivative gain  RDCD and KVCDL of VCDL2
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Mapping V-PID to T-PID (1)

21
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Mapping V-PID to T-PID (1)

22
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Proportional Integral Derivative
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Mapping V-PID to T-PID (2)

23
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T-PID Transfer Function
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Circuit Implementation

25

 Phase detector is implemented with SR latch

 Fully differential control eliminates reference clock

 Shared VCDL for proportional and derivative control
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Prototype Buck Converter in 180nm CMOS

26

Controller

Gate Driver &
Power FETs
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• “A 10–25 MHz, 600 mA buck converter using time-based PID compensator with 2µA/MHz quiescent
current, 94% peak efficiency, and 1MHz BW,” Symposium on VLSI Circuits (VLSIC), June 2014.

• "High frequency buck converter design using time-based control techniques," IEEE JSSC, Apr. 2015.
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Steady-State Waveforms (VO = 1V)
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Load Transient Response

28
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Oscillator Frequency Spectra

29

Closed Loop FVCO+

Open Loop FVCO+

Closed Loop FVCO-

Open Loop FVCO-

FSW = 11MHz
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Efficiency vs. Output Current
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Performance Summary

31

Publication ISSCC 2014 This Work

Control Loop
Voltage mode

PID

Time based

PID

Process 0.13µm CMOS 0.18µm CMOS

Supply Voltage 3.3V 1.8V

Output Voltage 0.37V – 2.85V 0.6V – 1.5V

FSW 10MHz(30MHz) 11-15MHz

L / C 330nH/3.3µF(1uF) 220nH/4.7µF

Max. Load Current 1.5A@VO=2.4V 600mA

Settling Time n/a 3.5µs

Output Ripple n/a 3.5mV

Controller Current n/a 23µA@11MHz

Peak Efficiency 91.8%(86.6%) 94%@VO=1V

Active Area n/a 0.24mm2
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 Since VCOs come inherently with multiple phases, different 
phases from VCOs can be tapped

 All phases use common integrator (VCO) but separate VCDLs

Application in Multi-Phase
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30-70MHz 4-Phase Time-Based Buck
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Control Hysteretic

Process 0.5µm CMOS

JSSC `09
P. Li

4

1.8

0.6-1.5

30-70

90

0.8

90µA@30MHz

87@VO=1V

2.5

T-PID PWM

65nm CMOS

This Work

4

1.2/1.4

0.9/1.1

233

2.5

0.3/0.4

N/A

83.2/84.5

1.93/3.14

Hysteretic

90nm CMOS

JSSC `05
Hazucha

4

1.5

1

500

1.5

N/A

N/A

68@VO=1V

N/A

Digital PWM

22nm CMOS

VLSI`14
Harish
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• A 1.8V 30-to-70MHz 87% Peak Efficiency 0.32mm2 4-Phase 
Time-Based Buck Converter Consuming 3uA/MHz Quiescent 
Current in 65nm CMOS, “ ISSCC-2015.

• A 4-phase 30-70 MHz switching frequency buck converter 
using a time-based compensator," IEEE JSSC, Dec. 2015
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