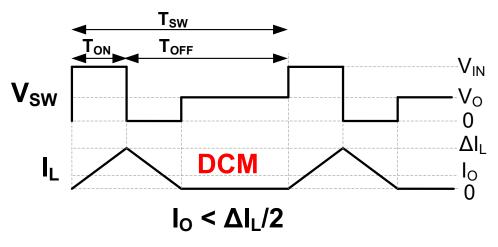
Lecture-42

EE5325 Power Management Integrated Circuits

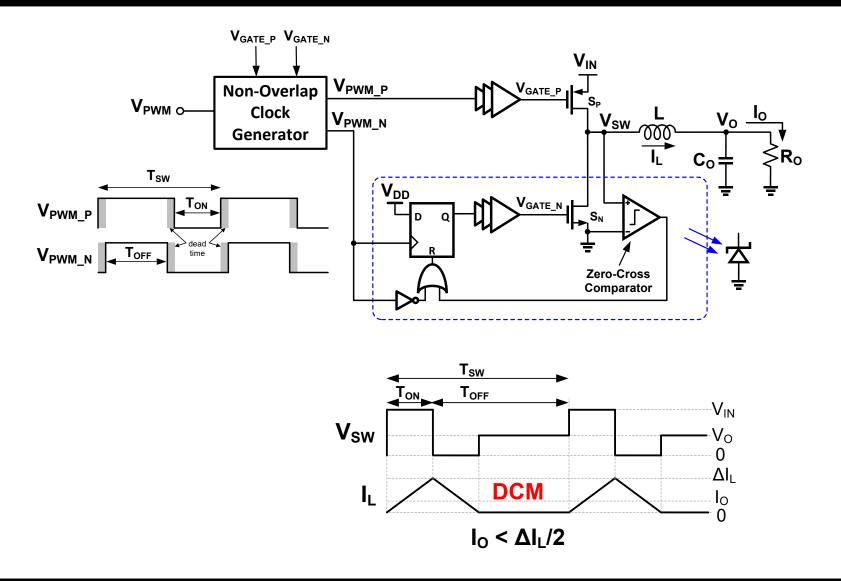
Dr. Qadeer Ahmad Khan

Integrated Circuits and Systems Group Department of Electrical Engineering IIT Madras

How to Enable PSM Mode


PSM mode is usually enabled when converter hits min or max duty cycle

- For a buck converter:
 - Minimum duty cycle can hit either under light load or when Vo/Vin ratio is quite low
 - Maximum duty can hit when Vo/Vin≈1 (close to 100% duty cycle)
- For a boost converter:
 - Minimum duty cycle can hit either under light load or when Vo/Vin≈1 (close to 0% duty cycle)
 - Maximum duty is very rare case in boost (>10x boost ratio in CCM)

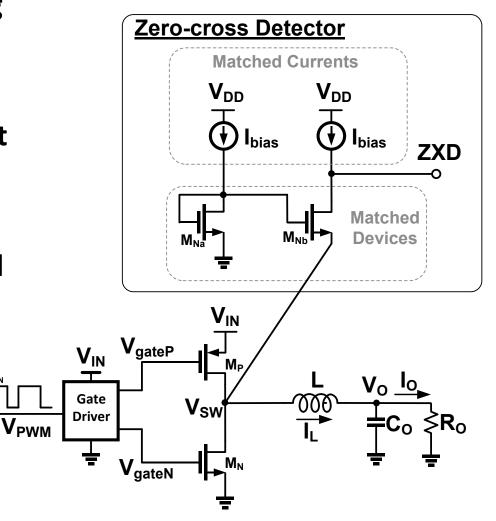

Detecting CCM-DCM Boundary

- Converter is operated in DCM by turning OFF low side FET (S_N) as soon as inductor current goes zero
- Zero current can be detected using zero-cross comparator as V_{sw} goes from negative to positive
- Can be used to switch from PWM to PFM mode
- Usually CCM-DCM detector output is de-bounced before entering/existing DCM mode to filter out any transient (momentarily) condition

Implementing DCM Operation

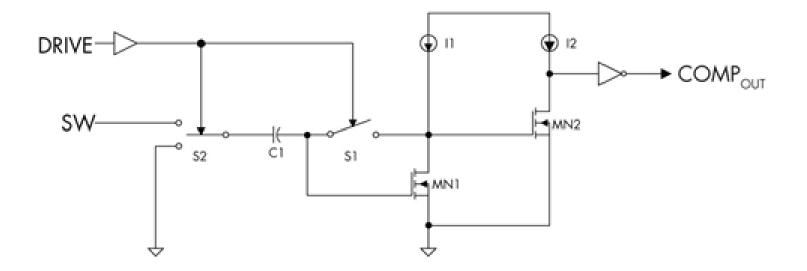
Zero-Cross Comparator Requirement

- Since voltage drop across NFET is low (due to low R_{ds_on}), a very high gain and low offset comparator is required to detect the inductor reverse current
 - Assuming 100mOhm Rds_on, 1mV error may cause error of 10mA in zero current detection.
- Comparator delay should be minimized as it may also introduce error
 - Assuming 1MHz and 10% duty cycle, with Vout=1.2V, L=1uH, inductor current slope is 1.2A/us → 10ns delay can cause an error of 12mA in the zero current detection
 - This becomes even more challenging when switching at higher frequencies (10MHz and above).


Zero-Cross Comparator Topologies

- Conventional two stage comparator is not suitable of zero current detection mainly due to large delay
- High speed comparator with offset cancellation is usually required to minimize the error
- Current comparator can also be used to minimize the delay

Current Based Zero-Cross Detector


- Requires good matching between devices
- Any mismatch in current will introduce offset
- Offset can be minimized by good layout and cascaded devices

Inverter Based Auto-Zeroed Comparator

- When DRIVE=1, C1 is pre-charged to Vgs of MN1
- When DRIVE=0, C1 samples V_{sw} node
- $COM_{OUT}=1$ if $V_{SW} < 0$
- Offset is automatically cancelled

Stephen W. Bryson, Using auto-zero comparator techniques to improve PWM performance, eetimes article, 2008

