Lecture-36

EE5325 Power Management Integrated Circuits

Dr. Qadeer Ahmad Khan

Integrated Circuits and Systems Group
Department of Electrical Engineering
IIT Madras

Buck-Boost Converter

Types of DC-DC converter

$$BUCK: \frac{V_{out}}{V_{in}} < 1$$

$$V_{out} = DV_{in}, I_{L} = I_{o}$$

BOOST:
$$\frac{V_{out}}{V_{in}} > 1$$

$$V_{out} = \frac{1}{1-D}V_{in}, I_{L} = \frac{1}{1-D}I_{o}$$

BUCK-BOOST:
$$\frac{V_{out}}{V_{in}} \approx 1$$

$$V_{out} = \frac{D}{1-D}V_{in}, I_L = \frac{1}{1-D}I_o$$

Also works as buck only or boost only

Why Buck-Boost?

- Considering the Li-ion battery discharge profile, either buck or boost fails to operate for the output voltage of 3.3V - 3.6V
 - Converter needs to be operated in buck-boost mode for most of the time

Drawback of Conventional BB converter

- Single Duty cycle, D, controls all the switches.
- Switching losses are higher due to simultaneous operation of 4 switches
- Conduction losses are higher due to larger Inductor current (nearly 2x when Vin ≈ Vout.

Tri-Mode Operation of BB Converter

Conventional vs. Tri-Mode Efficiency

$$V_{in} = 2.7V \text{ to } 5.5V, V_{out} = 3.3V, I_{load} = 500mA$$

Tri-Mode: Buck

• D_{BUCK} controls buck switches

$$V_{OUT} \approx (D_{BUCK})V_{IN}$$
 $I_{L} = I_{LOAD}$

Tri-Mode: Boost

D_{BOOST} controls boost switches

$$V_{OUT} \approx \frac{V_{IN}}{(1-D_{BOOST})}$$
 $I_{L} = \frac{I_{LOAD}}{(1-D_{BOOST})}$

Tri-Mode: Buck-Boost

- D_{BOOST} controls boost switches
- $V_{OUT} \approx \frac{D_{BUCK}}{(1-D_{BOOST})} V_{IN}$ $I_{L} = \frac{I_{LOAD}}{1-D_{BOOST}}$

Issue with Tri-Mode Buck-Boost

- Buck Mode: $D_{BOOST} = 0$
- Boost Mode: $D_{BUCK} = 1$

- Mode transition causes large voltage transient
- Boundary condition must be satisfied
 - Varies with load current and losses

Boundary Condition

$$V_{OUT}(buck) = V_{OUT}(buck - boost)$$

$$\rightarrow D_{BUCK_max} = \frac{D_{BUCK}}{1 - D_{BOOST_min}}$$

$$\rightarrow D_{\text{BUCK}} = D_{\text{BUCK_max}} \cdot (1 - D_{\text{BOOST_min}})$$

Solutions for Mode Transitions

- Appropriate Feed-forward voltage vf1 - 4 is subtracted to instantaneously change the duty cycles during mode transition.
- Analog Implementation makes is susceptible to PVT and requires external compensation capacitor

S. Bang, D. Swank, A. Rao, W. McIntyre, Q. Khan and P. K. Hanumolu, 1.2A 2MHz tri-mode Buck-Boost LED driver with feed-forward duty cycle correction, *CICC*, Sept. 2010.

Digital Constant ON/OFF Time Buck-Boost Converter

- Uses constant ON/OFF technique
- Enables High Switching Frequency Operation
- All digital implementation eliminates the need of external compensation capacitor

Q. Khan, et al, "A 3.3V 500mA Digital Buck-Boost Converter with 92% Peak Efficiency Using Constant ON/OFF Time Delta-Sigma Fractional-N Control, *Proc. ESSCIRC '11*, Sept. 2011.

Constant ON/OFF Time Operation

Inductor ripple current,
$$\Delta I_L = \frac{V_{IN} - V_{OUT}}{L} T_{ON}$$
 (1)
$$T_{ON} = D \cdot T \qquad T_{OFF} = (1 - D) \cdot T$$

- Max ripple occurs at D=0.5 (Ton = Toff)
 - The converter can be operated at high switching frequency when D=0.5
- From eq. 1, D increases with Vin
 - Fixing OFF time and making ON time function of Vin does not affect the inductor ripple
 - Causes variable switching frequency

Fractional-N Control

Buck Mode:

N cycles of 50% Buck: 1 cycle of 100% Buck

Buck-Boost Mode:

1 cycle of 50% Buck: 1 cycle of 50% Boost

Boost Mode:

N cycle of 50% Boost: 1 cycle of 0% Boost

Fractional-N Control Logic

- Predefined states are stored in the lookup table providing the coarse voltages
- Uses 18-bit acc for integrating the error (4 MSBs, 7 LSBs, 7 dropped bits.
- Any intermediate states are resolved by $\Delta\Sigma$ Modulator

Decreasing V_{IN}

Start-up Control

- Startup time is the function of no. of bits dropped in the accumulator and converter resolution
- No. of ACC bits dropped = 7
 - → The startup time may be more than 10ms
- Speeded up by dropping only 3 bits in accumulator and switch to 7 bits once the cutput settles

Inductor Current Profile

Controller Response

Output Voltage Ripple

Mode Transition

Hybrid PWM Fractional-N Control

Buck Mode	Buck-Boost Mode (Fractional-N)	Boost Mode
DBOOST = 0	90%Buck:100%Buck	DBOOST = VPWM
DBUCK = VPWM	90%Buck:10%Boost	DBUCK = 1
	10%Boost:0%Boost	

