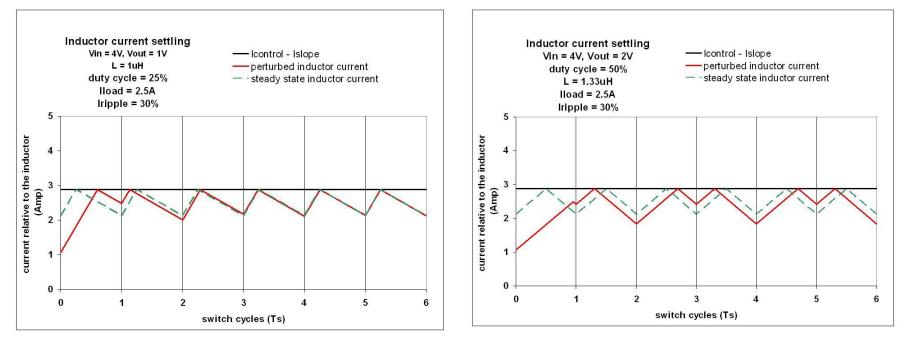
Lecture-33

EE5325 Power Management Integrated Circuits

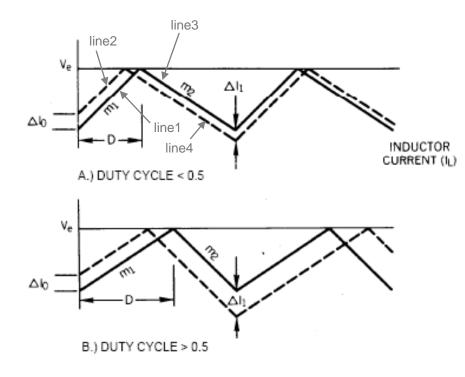
Dr. Qadeer Ahmad Khan


Integrated Circuits and Systems Group Department of Electrical Engineering IIT Madras

Sub-harmonic Oscillations

Caused due to instability in the current loop

Peak CMC


D < 0.5 (Stable)

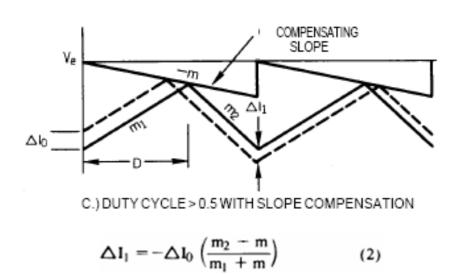
D > 0.5 (Un-stable)

Current loop instability

- Current Loop suffers from sub-harmonic oscillations when D > 0.5 (for peak CMC) and D<0.5 (for valley CMC)
- This sub-harmonic oscillation is suppressed by adding a compensating ramp in the control signal

Using eq. of straight line For line1, $I_1 = m_1(T_0) + I_0$ For line2, $I_1 = m_1(T_0 - \Delta T_0) + I_0 + \Delta I_0$ Subtracting two eq. $\Delta T_0 = \Delta I_0/m_1$ similarly line3 and line4 gives $\Delta I_1 = -m_2 \Delta T_0$ Substituting ΔT_0 , we get $\Delta I_1 = -\Delta I_0 \left(\frac{m_2}{m_1}\right)$

Case-1: D < 0.5 \rightarrow m₁>m₂ $\rightarrow \Delta I_1 < \Delta I_0$; stable Case-2: D = 0.5 \rightarrow m₁=m₂ $\rightarrow \Delta I_1 = \Delta I_0$; critically stable Case-3: D > 0.5 \rightarrow m₁<m₂ $\rightarrow \Delta I_1 > \Delta I_0$; unstable


EE5325 Power Management Integrated Circuits Integrated Circuits and Systems Group, Department of EE, IIT Madras

3

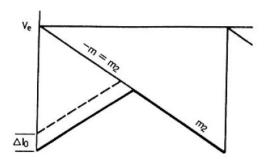
(1)

Ramp Compensation

 The current loop is stabilized by adding a small ramp in the current or subtracting the same from error signal

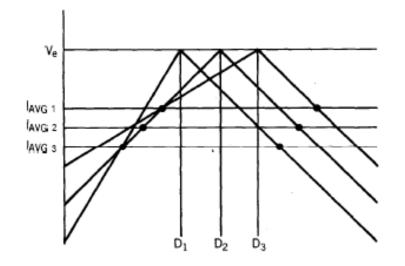
Disturbance after n cycles:

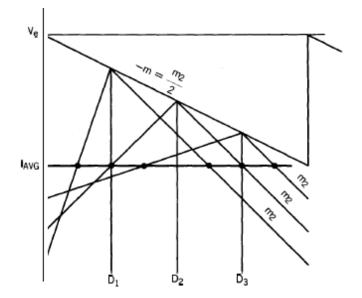
$$\Delta i_n = \left(-\frac{m_2 - m_1}{m_1 + m_1}\right)^n \cdot \Delta i_0 \tag{3}$$


Hence to ensure the stability of current loop Δi_n should die out \rightarrow (m2-m) < (m1+m)

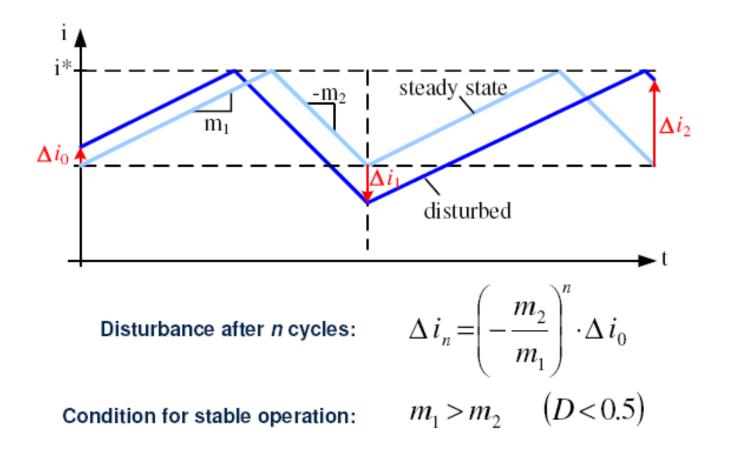
Stability Condition: $\Delta i_n / \Delta i_0 < 1$ Can be achieve by two ways

$$m > \frac{1}{2} m_2$$
 or $m > \frac{1}{2} (m_2 - m_1)$


Substituting both the case in (3) results in (m2-m) < (m1+m) hence satisfying the condition of stability

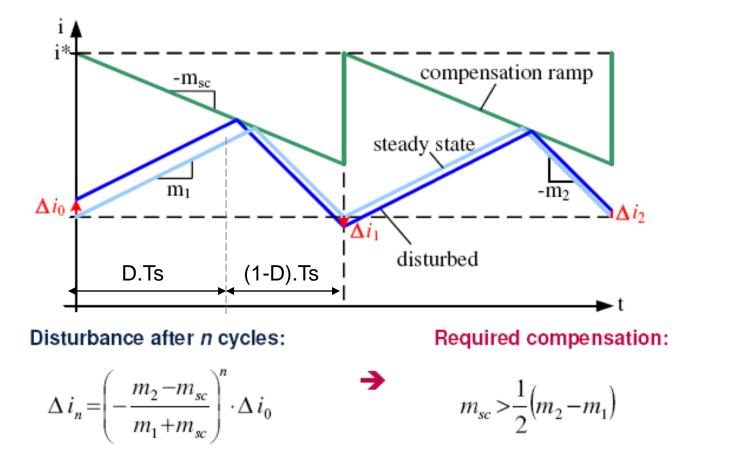

Ideal slope for compensating ramp, $m = m^2$ causes the output to settle in one clock cycle

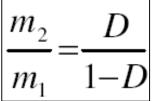
Ramp Compensation



PEAK CURRENT SENSING WITHOUT SLOPE COMPENSATION ALLOWS AVERAGE INDUCTOR CURRENT TO VARY WITH DUTY CYCLE

- AVERAGE INDUCTOR CURRENT IS INDEPENDENT OF DUN CYCLE AND INPUT VOLTAGE VARIATION FOR A SLOPE COMPENSATION OF m = $-\frac{1}{2}$ m₂.




Slope Compensation

Slope Compensation

Adaptive Slope Compensation

$$m_{sc} > \frac{1}{2}(m_2 - m_1) \rightarrow \frac{1}{2}m_1(\frac{m_2}{m_1} - 1)$$
(1)
$$\frac{m_2}{m_1} = \frac{D}{1 - D} = \frac{V_{out}}{V_{in} - V_{out}}$$
(2) For buck: $D = Vout/Vin$

substituing (2) in (1)

$$\Rightarrow m_{sc} > \frac{1}{2}m_1 \frac{V_{in}}{V_{in} - V_{out}} \quad or \quad \frac{m_{sc}}{m_1} > \frac{1}{2}\frac{V_{in}}{V_{in} - V_{out}}$$

also $m_1 = \frac{V_{in} - V_{out}}{L} \Rightarrow m_{sc} > \frac{V_{in}}{2L}$

The optimum slope compensation can be calculated by knowing one of the followings:

- m_1 , V_{in} and V_{out}
- V_{in} and L

