Analog Integrated Circuit Design

Nagendra Krishnapura (nagendra@ee.iitm.ac.in)

Assignment 5

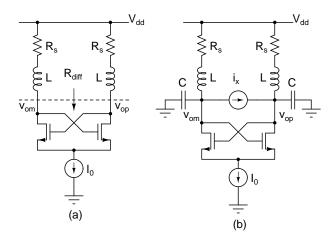


Figure 1: Problem 1

1. Calculate the current flowing in each transistor in Fig. 1(a) in the quiescent condition. Calculate the small signal differential resistance R_{out} looking into the drains of the two transistors.

In Fig. 1(b), calculate $(v_{op} - v_{om})/i_x$. What is the condition for this to be infinity? What is the frequency at which this happens?

Figure 2: Problem 2

2. Calculate the input impedance Z_{in} in Fig. 2. Is there anything special about it? Model the transistor using only its g_m .

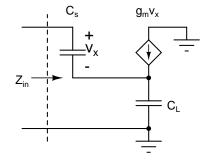


Figure 3: Problem 3

3. Calculate the input impedance $Z_{in}(s)$ in Fig. 3. Do you see anything special? What is the input impedance with $g_m = 0$?

Express $Z_{in}(s)|g_{m\neq0}$ as a parallel combination of $Z_{in}(s)|g_{m=0}$ and another branch $Z_1(s)$. What does $Z_1(s)$ consist of?

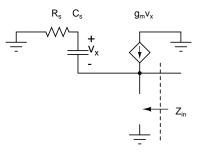


Figure 4: Problem 4

- Calculate the input impedance Z_{in}(s) in Fig. 4. Do you see anything special? Derive an equivalent circuit with passive elements that has an impedance Z_{in}.
- 5. Calculate the small signal impedance v_x/i_x . What is the condition for this to be infinity? What is the frequency at which this happens? Model the transistor

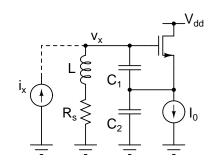


Figure 5: Problem 5

using only its g_m .

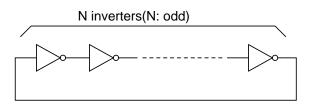


Figure 6: Problem 6

- 6. In Fig. 6, assume that all nodes are at the self bias voltage of the inverter. Model the small signal gain of each inverter as $A_0/(1 + s/p_1)$ and calculate the condition for instability (i.e. when the loop gain becomes -1). Hint: Among the roots of -1, pick the one which satisfies the above for the lowest value of A_0 .
- 7. What is the function of the circuits in Fig. 1(b), Fig. 5, and Fig. 6?
- 8. Fig. 7(a) shows a phase-locked loop which multiplies a 10 MHz reference up to 1 GHz. The charge pump details are shown in Fig. 7(b). K_{VCO} = 100 MHz/V; I_{CP} = 100µA; R = 10 kΩ; C₁ = 10 nF; C₂ = 0;

Determine the loop bandwidth and the location of the loop-gain zero.

Determine C_2 such that the phase margin is degraded by no more than 5° compared to the original. Determine the extra attenuation (in $\phi_{out}(s)/\phi_{ref}(s)$) at the reference frequency due to the addition of this value of C_2 .

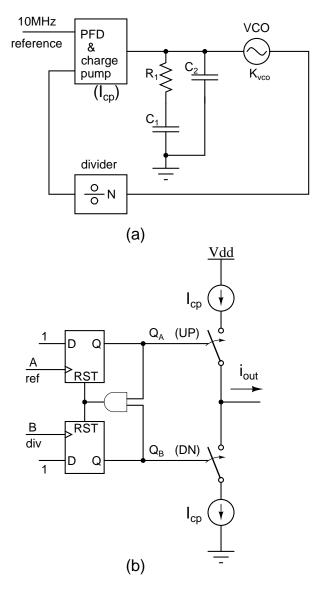


Figure 7: Problem 1