Problem 1

The MOSFET in Fig. 1 has $V_{T}=0.7 V$, and $\mu_{n} C_{o x}=$ $500 \mu A / V^{2}$. The drain current in the device is 1 mA .

Figure 1: Problem 1

- Determine the small signal gain from v_{s} to $v_{\text {out }}$.
- Determine the (W / L) of the device and the quiescent $V_{G S}$ and $V_{D S}$.
- The lowest frequency contained in v_{s} is $100 \mathrm{rad} / \mathrm{s}$. Determine the minimum values of C_{1}, C_{2} and C_{3} required so that the natural frequencies associated with their charging/discharging is atleast 10 times smaller than the smallest input frequency.
- Determine the voltage swing limits at $v_{\text {out }}$. What is the amplitude of the largest sinusoidal input signal that can be applied before the output begins to clip ?
- The supply voltage is changed to 5.5 V . Determine the small signal gain of the amplifier.
- Due to a change in temperature, V_{T} increases by 100 mV . What is the new small signal gain of the amplifier?

Problem 2

The MOSFETs in Fig. 2 have $V_{T}=0.7 V$, and $\mu_{n} C_{o x}=$ $500 \mu A / V^{2}$. Like in Problem 1, the drain current in M2 is 1 mA , and has the same $(\mathrm{W} / \mathrm{L})$ as in that problem.

- Determine the small signal gain from v_{s} to $v_{o u t}$.
- Determine the $(\mathrm{W} / \mathrm{L})$ of M 1 and the quiescent $V_{G S}$ and $V_{D S}$.

Figure 2: Problem 2

- The lowest frequency contained in v_{s} is $100 \mathrm{rad} / \mathrm{s}$. Determine the minimum values of C_{1} and C_{3} required so that the natural frequencies associated with their charging/discharging is atleast 10 times smaller than the smallest input frequency.
- Determine the voltage swing limits at $v_{\text {out }}$. What is the approximate amplitude of the largest sinusoidal input signal that can be applied before the output begins to clip?
- The supply voltage is changed to 5.5 V . Determine the small signal gain of the amplifier. How does this compare with the results of Problem 1? Why?
- What is the small signal gain of the amplifier if (a) $V_{T, M 1}=0.8 V, V_{T, M 2}=0.7 \mathrm{~V}(\mathrm{~b}) V_{T, M 1}=0.7 \mathrm{~V}, V_{T, M 2}=$ 0.8 V and (c) $V_{T, M 1}=0.8 \mathrm{~V}, V_{T, M 2}=0.8 \mathrm{~V}$? How does this compare with the results of Problem 1 ? Why?

Problem 3

The MOSFETs in Fig. 3 have $V_{T}=0.7 \mathrm{~V}$, and $\mu_{n} C_{o x}=$ $500 \mu \mathrm{~A} / V^{2}$. Like in Problem 1, the drain current in M2 is 1 mA , and has the same $(\mathrm{W} / \mathrm{L})$ as in that problem.

- Determine the small signal gain from v_{s} to $v_{o u t}$.
- Determine the $(\mathrm{W} / \mathrm{L})$ of M 1 and the quiescent $V_{G S}$ and $V_{D S}$.
- The lowest frequency contained in v_{s} is $100 \mathrm{rad} / \mathrm{s}$. Determine the minimum values of C_{1} and C_{3} required so that the natural frequencies associated with their charging/discharging is atleast 10 times smaller than the smallest input frequency.

Figure 3: Problem 3

- Determine the voltage swing limits at $v_{\text {out }}$. What is the amplitude of the largest sinusoidal input signal that can be applied before the output begins to clip?
- The supply voltage is changed to 5.5 V . Determine the small signal gain of the amplifier. How does this compare with the results of Problem $1 \& 2$? Why?
- What is the small signal gain of the amplifier if (a) $V_{T, M 1}=0.8 V, V_{T, M 2}=0.7 V$ (b) $V_{T, M 1}=0.7 V, V_{T, M 2}=$ 0.8 V and (c) $V_{T, M 1}=0.8 \mathrm{~V}, V_{T, M 2}=0.8 \mathrm{~V}$? How does this compare with the results of Problem $1 \& 2$? Why?

Problem 4

This problem illustrates the effects of battery internal resistance on the small signal performance of an amplifier. The MOSFETs in Fig. 4 have $V_{T}=0.7 \mathrm{~V}$, and $\mu_{n} C_{o x}=$ $500 \mu \mathrm{~A} / V^{2}$. Like in Problem 1, the drain current in M2 is to be $1 \mathrm{~mA} . R_{b}$ represents the internal resistance of the battery. To determine the operating point, neglect the drop across R_{b} due to the current flowing through the gate-bias resistors. For the first three parts, set $C b=0$.

- For $R_{b}=0$, determine the $(\mathrm{W} / \mathrm{L})$ of the FET and the quiescent $V_{G S}$ and $V_{D S}$. Determine the small signal yparameters of the two port enclosed in the box. What do you observe about y_{12} ? Why? Is there any AC negative feedback around M2 ?
- Repeat the above exercise for $R_{b}=500 \Omega$. Comment on the results.
- To avoid degradation in performance due to the DC drop across R_{b}, a student deliberately increases the battery voltage to 5.5 V , so that the device operating point is identical to that in the first part of this problem. Determine the small signal y-parameters of the two port enclosed in the box. What do you observe about y_{12} ? Why? Is there any AC negative feedback around M2 ?

Figure 4: Problem 4

- Based on the observations above, the student adds a huge capacitor $C b$ between the battery output and ground. Does this solve the problem(s) faced in part 3 above? Why ?

7) In the circuit shown below, it is known that both M1 \& M2 operate in saturation. Further, k and W / L for both transistors is the same. The threshold voltage of M2 is slightly larger than that of M1, by an amount ΔV_{T}. Determine I_{2}. Assume $\Delta V_{1} \ll V_{1}$.

Figure 7: Circuit for Problem 7
8) The small signal equivalent circuit of an amplifier is shown below. M1 is assumed to be in saturation, with transconductance g_{m} and output conductance g_{0}. Determine the Norton equivalent looking in at A , as well as the Thevenin equivalent looking in at B. What happens to these equivalents when $g_{m} \rightarrow \infty$?

Figure 8: Circuit for Problem 8
9) Determine the quiescent operating point and small signal gain of the amplifier shown below. What is the maximum permissible amplitude of the sinewave input so that clipping of the output is avoided?

Figure 9: Circuit for Problem 9
10) The input to the amplifier shown below is a sinusoid of amplitude A. Determine R1, R2, A, Vdd and Vss in the circuit to achieve the following:

- There must be no quiescent current flowing through the load and source.
- The incremental gain must be -4.
- The output sinewave must begin to just begin to clip at both extremes.

$$
\begin{aligned}
\mathrm{V}_{T} & =0.5 \mathrm{~V} \\
\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{~W} / \mathrm{L}) & =5000 \mu \mathrm{~A} / \mathrm{V}^{2}
\end{aligned}
$$

Figure 10: Circuit for Problem 10

