EE5310/EE3002: Analog Circuits Tutorial 1
Problems 6, 8, are optional.

1) Find the y-parameters of the following 2 port network

2)

Determine the y-parameters of the network a bove.
3) The terminals $A 1 \& B 1$ in the figures above are shorted. So are $A 2 \& B 2$; and the terminals marked C. Determine the y-parameter of the resulting 2 port.
4)

What do you understand by a unilateral two port? What constraint (s) does it impose on the y-matrix? The network above needs to be made unilateral. Determine "g" for this to happen.
5) Determine the voltage gain of the following network.

Evaluate the limit of this gain as $y_{21} \rightarrow \infty$.
6)

v_{s} is a small signal. Determine
(a) the operating points of the diodes
(b) the $D C$ current through the $5 k$ resistor
(c) the incremental voltage across the $5 k$ resistor.
Assume that $V_{Y}=0.65 \mathrm{~V}$

Determine the quiescent current through the diode. If a small
signal source v_{s} is inserted in genes with the $5 V$ source, determine the TOTAL voltage at $B . V_{Y}$ can be assumed to be 0.6 V .
8) A passive three terminal two port is shown below.

It is characterized by the equations

$$
\begin{aligned}
& I_{1}=\alpha V_{1} \\
& I_{2}=\beta V_{1}^{2}+\zeta V_{2}
\end{aligned}
$$

Where α, β, γ are positive constants with appropriate dimensions.
(a) Sketch the input \& output
characteristics of the device.
(b) Determine the incremental y-matrix when the two port is biased at an operating point $\left(V_{1}, V_{2}\right)$.
(C) Is this a passive two port?

Problem 9)

Figure 1: Circuit for Problem
For the circuit of Figure 1, assume that v_{i} is an incremental voltage source. Determine the operating point of the network. Find also the small signal voltage across the $1 \mathrm{k} \Omega$ resistor.

Problem 10)

In this problenu, ve uelve deeper into the notion of "small signal". Consider two nonlinear amplifiers, with inputoutput characteristics given by $V_{\text {out }}=\frac{V_{\text {in }}^{2}}{V_{A}}$ and $V_{\text {out }}=$ $V_{A} \exp \left(\frac{V_{i n}}{V_{A}}\right)$.

- An incremental gain of 10 is desired of both amplifers. Determine the operating points so that this gain may be achieved.
- We saw in class that the "small signal" approximation is valid only when the higher order terms in the Taylor series can be safely neglected in relation to the linear term. Compare the second order derivative of the two amplifers around the operating point. What can you say about the relative magnitudes of the incremental inputs for each of the amplifiers which qualify as small signals ?

