EE5310/EE3300: Analog Circuits; Tutorial 7

Nagendra Krishnapura (nagendra@iitm.ac.in), Aniruddhan S. (ani@ee.iitm.ac.in)

Due on 11th November 2014

For the following problems, use the data below:

 $\mu_n C_{ox} = 100 \,\mu\text{A}/V^2, \ \mu_p C_{ox} = 25 \,\mu\text{A}/V^2, \ V_{Tn} = V_{Tp} = 1 \text{ V}; \ \lambda_n = \lambda_p = 0 \text{ unless otherwise mentioned.}$

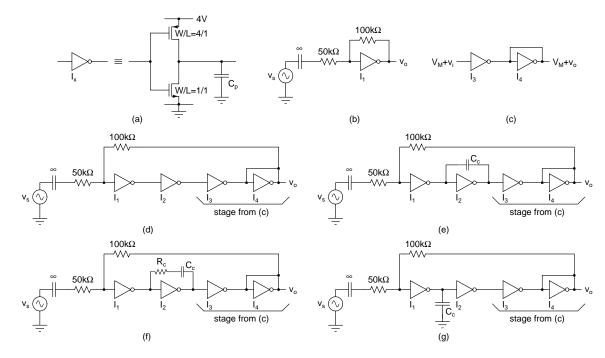


Figure 1: (a) CMOS inverter with a 4 V supply, (b)-(g) Circuits for Problems 2 to 8. The capacitor marked ∞ is large enough to be a short at arbitrarily low frequencies.

Determine the small signal model of the inverter in Fig. 1(a) and use it in the problems below. The output parasitic capacitor $C_p = 100$ fF. Use it with the inverter only when mentioned.

- Determine the closed loop V_o(s)/V_s(s) of the amplifier in Fig. 1(b). What is the dc gain? and how does it compare to the dc gain if the transistor W/L ratios in the inverter are very large? What is the -3 dB bandwidth f_{3dB} in Hz? Determine the loop gain by breaking the loop at the input of I₁ and determine the unity loop gain frequency f_{u,loop} in Hz and phase margin φ_M in degrees. How is f_{u,loop} related to f_{3dB}?
- 2. What is v_o/v_i in Fig. 1(c)? Ignore C_p in this case.
- 3. To improve the loop gain, an additional inverter I_2 is added into the loop as shown in Fig. 1(d). The stage from Fig. 1(c) is also added into the loop (*why*?). Considering C_p only for $I_{1,2}$, determine $V_o(s)/V_s(s)$ of the amplifier in Fig. 1(d). What is the natural frequency? What is the quality factor?

4. To stabilize the amplifier, C_c is added as shown in Fig. 1(e). Again considering C_p only for $I_{1,2}$, determine $V_o(s)/V_s(s)$ and adjust C_c such that the quality factor is unity (damping factor of 0.5). What is the natural frequency f_n in Hz?

With the value of C_c calculated above, determine the loop gain by breaking the loop at the input of I_1 and find the unity loop gain frequency $f_{u,loop}$ in Hz and phase margin ϕ_M in degrees. How is $f_{u,loop}$ related to f_n ?

- 5. Now include C_p for all four inverters and repeat 4. Closed loop transfer functions are too complicated and a single quality factor cannot be used with order > 2. Therefore, adjust C_c in this case to realize the same phase margin as in 4. For this, you have to resort to a numerical solution. One possibility is to derive the expression for loop gain, substitute all numerical values of components except C_c , and substitute *s* with $j\omega_{u,loop}$ (which is also a function of C_c . You can use the approximated expression for this. For systems with high dc gain, if the loop gain $L(s) = (b_0 + b_1 s + \ldots)/(a_0 + a_1 s + \ldots), \omega_{u,loop} \approx b_0/a_1$ —prove/verify this with known cases). Get the expression for phase margin as a function of C_c and find the answer. Before actually doing the calculations, clearly reason out what the which way C_c should be changed from the value in 4.
- 6. Now try the improved circuit in Fig. 1(f). $R_c = 1/g_{m,inv}$. Include C_p for all four inverters. Adjust C_c in this case to realize the same phase margin as in 4 using the procedure described in 5. Before actually doing the calculations, clearly reason out what the which way C_c should be changed from the value in 5.

Find the unity loop gain frequency $f_{u,loop}$ in Hz, and compare it to the values in 4 and 5.

7. Try the stabilization scheme in Fig. 1(g) to obtain the same phase margin as in 4. Can you obtain a quality factor of unity for the closed loop transfer function? State your reasons clearly.

If you can stabilize it, determine C_c , find the unity loop gain frequency $f_{u,loop}$ in Hz, and compare it to the values in 4, 5, and 6.

8. Repeat 7 with $\lambda_n = \lambda_p = 0.1/V$.

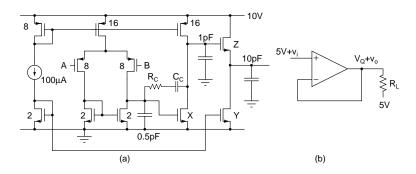


Figure 2: (a) MOS opamp (numbers next to transistors are aspect ratios), (b) Unity gain voltage buffer using the opamp in (a). Ignore the capacitors for questions 9 to 14.

- 9. For the opamp in Fig. 2, find out which of A and B is the non-inverting input.
- 10. It is desired that when all devices are in saturation, the quiescent voltages at the drains of the input transistors are equal. Determine X.

- 11. The opamp must be able to sink or source 1 mA current. Also, it must have an open loop output resistance of 500Ω . Determine Y and Z.
- 12. The opamp is used to realize the unity gain buffer in Fig. 2(b). For $R_L = \infty$, determine the small signal dc gain v_o/v_i , small signal output resistance, and swing limits on v_i such that all transistors are in saturation.
- 13. Repeat 12 for $R_L = 5 \,\mathrm{k}\Omega$ and $500 \,\Omega$. What do you notice?
- 14. Use $\lambda_p = \lambda_n = 0.02/V$ and repeat 12 for $R_L = 5 \text{ k}\Omega$. What do you notice?
- 15. With capacitors loading each of the stages as shown in Fig. 2(a), find the values of frequency compensation components R_c and C_c to obtain a phase margin of 60°. Choose $R_c = 0$. What is the bandwidth of the unity gain buffer? Use suitable approximations everywhere.
- 16. Repeat 15 with R_c chosen to eliminate the right half plane zero.