EE2019 – Analog Systems and Lab.

Tutorial #5

Qadeer Ahmad Khan & Saurabh Saxena

Question-1

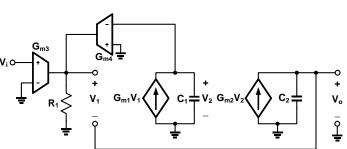
Question-3

A filter transfer function is given by

$$H(s) = \frac{10\left(1 + \frac{s^2}{\omega_p^2}\right)}{1 + \frac{s}{\omega_p Q_p} + \frac{s^2}{\omega_p^2}}$$

Here, $\omega_p = 10^8$ and $Q_p = \frac{1}{3}$.

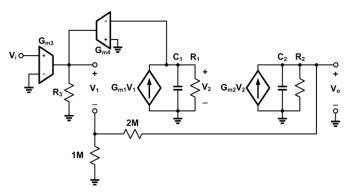
- a) Draw s-domain block diagram of the above filter using integrators and gain blocks.
- b) Realize the above filter transfer function using ideal opamps, resistors, and capacitors.
- c) If 10pF capacitors are used for all integrators, find all resistor values used in your design.
- d) Draw Bode magnitude and phase plots for the filter transfer function.


Question-2

The magnitude of a filter transfer function is given by

$$|H(j\omega)|^2 = \frac{4}{1 + \left(\frac{\omega}{\omega_p}\right)^6}$$

Here, $\omega_p = 10^8$.


- a) Find transfer function for the filter in s-domain with magnitude response as given above. The filter should be stable.
- b) Draw s-domain block diagram of the above filter using integrators and gain blocks.
- c) Realize the above filter transfer function using ideal opamps, resistors, and capacitors.
- d) If 10pF capacitors are used for all integrators, find all resistor values used in your design.
- e) Draw Bode magnitude and phase plots for the filter transfer function.

For the closed loop feedback system shown above G_{m1} = 4 mA/V, G_{m2} = 25mA/V, G_{m3} = 1 mA/V, R_1 = 1k $\Omega,~C_1$ = 10 pF, C_2 = 100 pF,

- a) Find loop gain and phase margin when $G_{m4} = 0$.
- b) Find G_{m4} such that the closed loop $\frac{V_o(s)}{V_i(s)}$ is a secondorder transfer function with Butterworth (maximally flat) response in signal band.
- c) For G_{m4} value found in part (b), find loop gain and plot Bode magnitude and phase plots for the loop gain. Also, find the phase margin for loop.

Question-4

For the closed loop feedback system shown above G_{m1} = 25 mA/V, G_{m2} = 40 mA/V, G_{m3} = 1 mA/V, R_1 = 1k Ω , R_2 = 100 Ω , R_3 = 1k Ω , C_1 = 100 pF, C_2 = 1 nF,

- a) Find loop gain and phase margin when $G_{m4} = 0$.
- b) Find G_{m4} such that the closed loop $\frac{V_o(s)}{V_i(s)}$ is a secondorder transfer function with Butterworth (maximally flat) response in signal band.
- c) For G_{m4} value found in part (b), find loop gain and plot Bode magnitude and phase plots for the loop gain. Also, find the phase margin for loop.