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Circuit Analysis Using Fourier and Laplace Transforms

Based on
@ exp(st) being an eigenvector of linear systems
o Steady-state response to exp(st) is H(s) exp(st) where H(s) is some scaling factor

@ Signals being representable as a sum (integral) of exponentials exp(st)

Nagendra Krishnapura https://www.ee.iitm.ac.in/~nagendra/ Circuit Analysis Using Fourier and Laplace Transforms



Fourier series

Periodic x(t) can be represented as sums of complex exponentials
@ x(t) periodic with period Ty
@ Fundamental (radian) frequency wq = 27/ Ty

x(t) = Z ay exp(jkwot)

k=—o0

o x(t) as a weighted sum of orthogonal basis vectors exp(jkwot)
e Fundamental frequency wq and its harmonics
o a: Strength of k" harmonic

@ Coefficients ax can be derived using the relationship
= —/ x(t) exp(—jkwot)dt

@ “Inner product” of x(t) with exp(jkwot)
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Fourier series

@ Alternative form

x(t) = ap + Y _ by cos(kwot) + ck sin(kuwot)
k=1

@ Coefficients by and ¢, can be derived using the relationship

2 [T

b = 2 / x(t) cos(kuot)dt
To Jo
2 [T

o6 = 2 / x(t) sin(kwot)dt
To Jo

@ Another alternative form

x(t) = ap + Yy _ dk cos(kwot + )
k=1

@ Coefficients by and ¢, can be derived using the relationship
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Fourier series

If x(t) satisfies the following (Dirichlet) conditions, it can be represented by a Fourier
series

@ x(t) must be absolutely integrable over a period
To
/ |x(t)| dt must exist
0

@ x(t) must have a finite number of maxima and minima in the interval [0, To]
@ x(t) must have a finite number of discontinuities in the interval [0, To]
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Fourier transform

@ Aperiodic x(t) can be expressed as an integral of complex exponentials

x(t) 1/°° X (w) exp(just)de

:E .

x(t) as a weighted sum (integral) of orthogonal vectors exp(jwt)
Continuous set of frequencies w
X, (w)dw: Strength of the component exp(jwt)

°
°
°
o X, (w): Fourier transform of x(t)

@ X, (w) can be derived using the relationship
Xo(w) = / x(t) exp(—jwt)dt
—o0

@ “Inner product” of x(t) with exp(jwt)
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Fourier seies

If x(t) satisfies either of the following conditions, it can be represented by a Fourier
transform

@ Finite Ly norm

/Oo Ix(1)] dt < o0

— o0

@ Finite L, norm
/ Ix(t)[? dt < oo
—o00

@ Many common signals such as sinusoids and unit step fail these criteria

e Fourier transform contains impulse functions
@ Laplace transform more convenient
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Fourier transform

x(t) in volts = X, (w) has dimensions of volts/frequency

X.(w): Density over frequency

Traditionally, Fourier transform X;(f) defined as density per “Hz” (cyclic frequency)
Scaling factor of 1/27 when integrated over w (radian frequency)

® 6 6 ¢

x(t) /7 = Xi(f) expj2rft)af
_ 217 :’o Xo(w) exp(jewt)dew

Xo(w) = Xp(w/2m)
X:(f): volts/Hz (density per Hz) if x(t) is a voltage signal

X,(f) = [ " X(t) exp(—j2rft)at

Xo(w) = /Oo X(t) xp(—jet)dlt

Nagendra Krishnapura https://www.ee.iitm.ac.in/~nagendra/ Circuit Analysis Using Fourier and Laplace Transforms



Fourier transform as a function of jw

If jw is used as the independent variable
1 i . .
x() = o= [ X(e) explistidio)

/27T —joo

X(jw) = Xo(w)
Same function, but jw is the independent variable
Scaling factor of 1/j2r

With jw as the independent variable, the definition is the same as that of the
Laplace transform
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Fourier transform pairs

@ Signalsin —co <t < oo

1 < 2r6(w)
exp(jwot) < 2mé(w — wp)
cos(wpt) <> mo(w —wp) + T (w + wo)
sin(wot) <> ?5@; —wp) — ?5@; +wo)
2a
eXp(_altl) A a2 +w2

@ Not very useful in circuit analysis
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Fourier transform pairs

@ Signalsin0 <t < oo

u(ty < 7r§(cu)—i—.l

Jow
exp(juwot)u(t) <« mo(w —wp) + ;
J(w —wo)
cos(wot)u(t) <« 7o (w —wp) + m(w + wo) + 2/0.) >
wh —w
sin(wot)u(t) ¢ “6(w —wo) — ~6(w +wo) + —5 2
] ] wp —w
1
—at)u(t
exp(—at)u(t) « fota

@ Useful for analyzing circuits with inputs starting at t = 0
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Circuit analysis using the Fourier transform

@ For an input exp(jwt), steady state output is H(jw) exp(jwt)

@ A general input x(f) can be represented as a sum (integral) of complex
exponentials exp(jwt) with weights X (jw)dw/2m

X(t) = 217 /jo X(juw) exp(jurt)du

@ Linearity = steady-state output y(t) is the superposition of responses
H(jw) exp(jwt) with the same weights X(jw)dw /27

Y(jw)

1 OO0 e N
v =5 /_ X(j)H(jeo) expljeot) do

@ Therefore, y(t) is the inverse Fourier transform of Y (jw) = H(jw)X(jw)
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Circuit analysis using the Fourier transform
x(t) % L é ¢ y(1)
—> —>
T
circuit
analysis

H(jew)

Fourier
transform
Inverse
Fourier
transform

=
~.
E

Y(jw) = H(jw)X(jw)
-

@ Calculate X(jw)
@ Calculate H(jw)
@ Directly from circuit analysis
e From differential equation, if given

@ Calculate (look up) the inverse Fourier transform of H(jw)X(jw) to get y(t)
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Circuit analysis using the Fourier transform

@ In steady state with an input of exp(jwt), “Ohms law” also valid for L, C

/=) iC iL
+ + +
VR Ve Vi
C L
v(t) i(t) v(t)/i(t)

Resistor Vg = Rir Rlg exp(jwt) Ir exp(jwt) R
Inductor ve = L(di/dt) | jwLl exp(jwt) Iy exp(jwt) JjwlL
Capacitor | ic = C(dvc/dt) Ve exp(jwt) JjwCVe exp(jwt) | 1/ (jwC)

@ Ig, Iy, Vo Phasors corresponding to ig, i, V¢

@ Use analysis methods for resistive circuits with dc sources to determine H(jw) as
ratio of currents or voltages
@ e.g. Nodal analysis, Mesh analysis, etc.

@ No need to derive the differential equation
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Example: Calculating the transfer function

@ Mesh analysis with currents Iy, b

1 1

A+ G jwC [/o] _ {Vs}
_L jwl. + ; + L I2 o
JwC; Jote JwCi  jwCs
fo Gw) (jw)3C1CsLz + (jw) (C5 + Cr)
Vs (jw) — (jw)PCiCslp + (jw)2Calz + (jw) (C3 + C1) R+ 1
b (jw) (jw) C3

Vs (jw)  (jw)3C1Cslp + (jw)2Cslp + (jw) (C3 + C1) R+ 1
o Vi=(lh—k)/(jwC), Va =/ (jwCs)
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Example: Calculating the response of a circuit

vi(t) C —— w(t)

vi(t) = Vp exp(—at)u(t)

@ From direct time-domain analysis, with zero initial condition

Steady-state response Transient response
V Vv,
vo(t) = ﬁ exp(—at)u(t) — ﬁ exp(—t/RC)u(t)
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Example: Calculating the response of a circuit

R
Y -
vi(t) C == w(t) Vi(w)—|  H(jw) o Vo(jw)
vi(t) = Vpexp(—at)u(t) Viljeo) = 212

@ Using Fourier transforms and transfer function

. Vp 1
V, = L
o(jw) a+jwil+jwCR
Vo 1 Vp CR

1—aCRa+jw 1—aCR1+jwCR

@ From the inverse Fourier transform

Steady-state response Transient response
Vp Vp
vo(t) = T aCH exp(—at)u(t) — T aCR exp(—t/RC)u(t)

@ We get both steady-state and transient responses with zero initial condition
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Fourier transform of the input signal

3
05
=
= 5 |
-20 0 20

LVi(jw)[’]

-20 0 20
w

@ Fourier transform magnitude and phase (Vp, =1, a= 1)
@ Shown for —20 < w < 20
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Fourier transform of the input signal

Samples of constituent sinusoids

1
=0 S— _
" = %5 Viljw) exp(jwt)dw

5 0 5

t

@ Fourier transform components V;(jw)dw - exp(jwt): Sinusoids from t = —co to co
@ A small number of sample sinusoids shown above

@ The integral is close, but not exactly equal to x(t)
@ Extending the frequency range improves the representation
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How do we get the total response by summing up steady-state
responses?

Fourier transform components V;(jw)dw - exp(jwt): Sinusoids from t = —co to co

For any t > —oo, the output is the steady-state response

H(juw) Vi(jew)dew - exp(just)

Sum (integral) of Fourier transform components produces the input x(t) (e.g.
exp(—at)u(t)) which starts from t = 0

Sum (integral) of steady-state responses produces the output including the
response to changes at t = 0, i.e. including the transient response

Inverse Fourier transform of V;(jw)H(jw) is the total zero-state response
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Accommodating initial conditions

V’C(O’) =0 i(07)=1l Ii(O*) =0
ve(07) =V i A A A
n A v/ I I
(o}
c L L
L -
C
- Vou(t) hu(t)
B
B B B

@ A capacitor cannot be distinguished from a capacitor in series with a constant
voltage source

@ An inductor cannot be distinguished from an inductor in parallel with a constant
current source
@ Initial conditions reduced to zero by inserting sources equal to initial conditions
@ Treat initial conditions as extra step inputs and find the solution
e Step inputs because they start at t = 0 and are constant afterwards
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Accommodating initial conditions

R
ve(07) =V VC(O )=0
e I
vi(t) —|— vo(t) (0
4 v,(t)< vo(l)
vi(t) = Vpexp(— -) x(t)
-
Ve(t) = Vou(t)
H(jer) Hy (o)
1 wCR
) ) ) jw
v, - v,
o) V) T 7o0r TU9) T 0cR
v, 1 1\ JjwCR
— [ I VA (i ) e
atjwltjwCR T 0(” @+ )1+/wCFf
v, 1 CR CR
= — — - + W -
1—aCR \a+jw 1+ jwCR 1+ jwCR

vo(t) 1_acR

Ve exp(—at)u(t) + (V0 -

%) exp(—t/RC)u(t)

@ Impulse vanishes because §(w)Hx(jw) = §(w)Hx(0), and Hx(0) = 0
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@ Contains impulses for some commonly used signals with infinite energy

@ e.g. u(t), cos(wot)u(t)

@ Even more problematic for signals like the ramp—Contains impulse derivative
— Laplace transform eliminates these problems
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Laplace transform

@ Problem with Fourier transform of x(t) (zero for t < 0)
/ x(t) exp(—jwt)dt may not converge
o0-

@ Multiply x(t) by exp(—ot) to turn it into a finite energy signal
@ Fourier transform of x(t) exp(—ot)

[e o)
X, ju i) = /07 x(1) exp(—at) exp(—jwt)at
@ Inverse Fourier transform of X, ;,, (jw) yields x(t) exp(—ot)
1 [ . . .
xR exp(~0t) = o= [ X, () xplict)d(iv)
j2m J_joo
@ To get x(t), multiply by exp(ct)

i wt)d(j
X = 5o /_ | Xeislj) p(ot) rpin)a(e)

1 Allowable values of o will be clear later
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Laplace transform

Defining s = 0 + jw

o+joo
x(t) = L/ X(s)exp (st)ds
/27r o—joo

@ s: complex variable
o Integral carried out on a line parallel to imaginary axis on the s-plane

Representation of x(t) as a weighted sum of exp(st) where s = o + jw
@ s was purely imaginary in case of the Fourier transform

Well defined weighting function X(s) for a suitable choice of o
X(s) (same as X, ., (jw) with s = o + jw) given by

X(s) = /Oio x(t) exp(—st)at

This is the Laplace transform of x(t)
Same definition as the Fourier transform expressed as a function of jw
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Laplace transform

@ eg. x(t) = u(t)
/ x(t) exp(—jwt)dt does not converge
0—

> 1
/ x(t) exp(—st)dt converges to p foro >0
o-

@ If o is such that Fourier transform of x(t) exp(—ot) converges, x(t) can be written
as sum (integral) of complex exponentials with that

x(t) ! /GHOO X(s)exp (st)ds

- /27 o—joo

@ Steady-state response to exp(st) is H(s) exp(st), so proceed as with Fourier
transform
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Circuit analysis using the Laplace transform

@ For an input exp(st), steady state output is H(s) exp(st)

@ A general input x(t) represented as a sum (integral)? of complex exponentials
exp(st) with weights X(s)ds/j2m

1 o+joo
x(t) = —/ X(s) exp(st)ds
j27T o—joo

@ By linearity, steady-state y(t) is the superposition of responses H(s) exp(st) with
weights X(s)ds/j2m

c7+oo
y()—/2 / X(s)H s) exp(st)ds

@ Therefore, y(t) is the inverse Laplace transform of Y(s) = H(s)X(s)

25 is some value with which X(s) can be found; Value not relevant to circuit analysis as'long as it exists.
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Circuit analysis using the Laplace transform

I [P

£ =
oS 835
TG o AT
g8 analysis ESS
X(s)

Y(s) = H(s)X(s)
———

|

H(s)

@ Calculate X(s)
@ Calculate H(s)
e Directly from circuit analysis
o From differential equation, if given

@ Calculate (look up) the inverse Laplace transform of H(s)X(s) to get y(t)
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Laplace transform pairs

@ Signalsin0 <t< oo

1
t —
u(ty < 5
1
tu(t)y <+« 2
1
jwot)u(t
expljwotiu(t) < —— oo
s
Hu(t
cos(wot)u(t) < 52+w§
. wo
Hu(t
sin(wet)u(t) < 52+w§
1
—at)u(t
exp(-anu(t) <
1
texp(—at)u(t) <+ ——
p(—at)u(t) (51 ay
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Circuit analysis using the Laplace transform

@ In steady-state with exp(st) input, “Ohms law” also valid for L, C

iR ic L
+ + +

VR Ve VL
C
v(t) i(t) v(®)/i(t)
Resistor vp = Rig Rlg exp(st) Ir exp(st) R
Inductor v, = L(di./dt) sLl exp(st) I, exp(st) sL
Capacitor | ic = C(dvg/dt) V¢ exp(st) sCV; exp(st) 1/(sC)

@ Use analysis methods for resistive circuits with dc sources to determine H(s) as
ratio of currents or voltages

e e.g. Nodal analysis, Mesh analysis, etc.

@ No need to derive the differential equation
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Example: Calculating the transfer function

C Cs

+sCq + !
R 'L 1 sbp [Vq _ [ls}
Vo| — |0
- — +8C3+—=| L7
si s, et R
Vi g s2C3lp + sLo/R+ 1
s $3C{C3LaR+82(Cq + C3) Lo+ s((Cy + C3)R+ Lp/R) +2

A 1

2 _pg
Is s3C1C3LaR + 82 (Cy + C3) Lp + 8 ((C1 + C3)R + Lp/R) + 2
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Accommodating initial conditions

v5(07)=0 i(0~)=1h i10=)=0
ve(07) = Vo PR A A
" A iL IL
Lo -
- VoLI /OLI(f)
B
B B

@ Initial conditions reduced to zero; extra step inputs
@ Circuit interpretation of the derivative operator

% ~  sX(s)—x(07)
dx x(07)
o ~ s (X(s) — T)

@ Extra step input x(07)/s
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Calculating the output with initial conditions

PYYSCLREL A2
+
vi(t) c + Vo(t) c —L vc(t)
_ : + ot
T () e
Vi(t) = Vpcos(wot)u(t) V(1)
=L
vx(t) = Vou(t)
s 1 Vo SCR
v, = v )
o(#) P 1 Z1+1sCR s 11sCR
B A 5+ (woCR) wo N (v B A ) CR
T 11 (wCRE £ +uf ® T 1 (wCR)E/ 1+ sCR
Steady-state response Transient response
v, v,
w(t) = L cos (wot — ¢) u(t) + (vo - #) exp(—t/RC)u(t)
1 + (woCR)? + (woCR)
¢ = tan"' (wyCR)

Circuit Analysis Using Fourier and Laplace Transforms
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Laplace transform: exp(st) components and convergence

Constituent X (s) exp(st) with o = 0.1
10 ‘

5 L

0 ——
-5 0 5
2

x(t)

0 T (0.14720
5 727 Jo.1-j20 X(S) exp(st)ds

-5 0 5

t
@ x(t)=u(t); X(s)=1/s
@ Sum of exponentially modulated sinusoids with & = 0.1 converges to the unit step
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Laplace transform: exp(st) components and convergence

OConstituent X (s) exp(st) with o = 0.3
1 ‘

5 L

0

-5 0 5
2 ‘

0 x(t) I

034,20

9 ;zL— J().:;j}l‘zu X(“) exp(st)ds

-5 0 5

t

e x(t)=u(t); X(s)=1/s

@ Sum of exponentially modulated sinusoids with & = 0.3 converges to the unit step
@ Any o in the region of convergence (ROC) would do

@ For u(t), ROCiso >0
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Laplace transform: exp(st) components and convergence

Constituent X (s)exp(st) with o =0

e

x(t) =u(t); X(s)=1/s
For u(t), ROCis o >0

Sum of exponentially modulated sinusoids with & = 0 does not converge to the
unit step

This is the Fourier transform of u(t) with w§(w) missing
Zero dc part in the sum
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Laplace transform: exp(st) components and convergence

Constituent X (s)exp(st) with o = —0.1

2
0
-2 s
-5 0 5
x(t)
0
1 ~—0.14+720 .
5 o J[fU.l—j‘zo X-(s) exp(st)ds
-5 0 5
t
@ x(t) =u(t); X(s)=1/s
@ For u(t), ROCiso >0
@ Sum of exponentially modulated sinusoids with o = —0.1 does not converge to
u(t), but converges of —u(—1)!
@ Inverse Laplace transform formula uniquely defines the function only if the ROC is
also specified
@ Inverse Laplace transform of X(s) = 1/s with ROC of o < 0is —u(—t)
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Laplace transform: exp(st) components and convergence

Constituent X (s)exp(st) with o = —0.3

5
0 %
-5 s
-5 0 5
x(t)
0 =
1 ~—0.3+720 .
> Jon ‘1[70.37120 X‘\/S) exp(st)ds
-5 0 5
t
@ x(t) =u(t); X(s)=1/s
@ For u(t), ROCiso >0
@ Sum of exponentially modulated sinusoids with o = —0.3 does not converge to
u(t), but converges of —u(—1)!
@ Inverse Laplace transform formula uniquely defines the function only if the ROC is
also specified
@ Inverse Laplace transform of X(s) = 1/s with ROC of o < 0is —u(—t)
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Laplace transform: Uniqueness, causality, and region of convergence

@ Laplace transform F(s) uniquely defines the function only if the ROC is also
specified

@ Inverse Laplace transform of F(s) can be f(t)u(t) (a right-sided or causal signal)
as well as —f(t)u(—t) (a left-sided or anti-causal signal) depending on the choice
of o

@ Speficying causality or the ROC removes the ambiguity
@ One-sided (0 < t < o) Laplace transform applies only to causal signals
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Impulse response

T iTIo—
circuit
ianalysis

1 Y(s) = H(s)
—> H(s) —>

Laplace
transform
Inverse
Laplace
transform

@ Laplace transform of §(t) is 1
@ Transfer function H(s): Laplace transform of the impulse response h(t)
@ Impulse response usually calculated from the Laplace transform
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Step response

0 4Ly

£ £
85 385
= % circuit § = %
s analysis £S8S
1/s Y(s) = H(s)/s
] H(s) —

@ Laplace transform of u(t) is 1/s
@ H(s)/s: Laplace transform of the unit step response hy(t)
@ Step response usually calculated from the Laplace transform
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Circuits with R, L, C, controlled sources

@ Transfer function: Rational polynomial in s

e Transfer function from any voltage or current x(t) to any voltage or current y(t)
H(s) = Y(s) . szM + b/\/1_1SM_1 + ...+ bys+ by
 X(s) ansN+an_isN-T+.. . +ajs+a

o H(s) of the form N(s)/D(s) where N(s) and D(s) are polynomials in s

o Differential equation relating y and x

aNL+aN71M+”.+a1ﬂ+aoy =
dtN dtN—T1 dt
dMx aM=1x dx

by by 4 e 4+ by 4 b

Mg T OM=t gy e D DX

@ D(s) corresponds to LHS of the differential equation
o Highest power of s in D(s): Order of the transfer function

@ N(s) corresponds to RHS of the differential equation
@ Transfer function: Convenient way of getting the differential equation
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Transfer function: Rational polynomial

@ Transfer function: Rational polynomial in s

_ N(S) _ bMSM+b/\,1,15’\/’71 +...+b1S+b0
T D(s)  aysN+ay_1sVN-1 +...+ais+a

H(s)

e Convenient form for finding dc gain by /ap, high frequency behavior (by /aw) s¥—N

@ Transfer function: Factored into first and second order polynomials

CONGS) Ni(S)Na(S) -~ Ni(s)
H(9) = D(s) = Dy(s)Da(s)- - Duls)

o K=M/2(even M), K = (M +1)/2(odd M); L = N/2(even N), L = (N + 1)/2(odd N)

@ N(s): All second order (even M) or one first order and the rest second order (odd M);
Similarly for Dj(s)

@ Convenient for realizing as a cascade; combining different N and D,
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Transfer function: Factored into terms with zeros and poles

@ Transfer function: zero, pole, gain form

(s):M: (s—2z1)(s—2)---(s—2m)
D(s)  (s—=p1)(s—p2)---(s—pn)

@ Zeros z, poles px, gain k
@ Convenient for seeing poles and zeros

@ Transfer function: Alternative zero, pole, gain form3

H(s) = ——= =k %
%0 R (84

Zeros zi, poles px, gain k

ko: dc gain

Convenient for seeing poles and zeros
Convenient for drawing Bode plots

3Cannot use when poles or zeros are at the origin
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Transfer function: Partial fraction expansion

@ Transfer function: Partial fraction expansion
c C, c
1o, % L N
S—p1 S—p2 S—PNn
1 exp(p1t) + Co exp(pat) + . .. cn exp(pnt)

H(s)
h(t)

@ Convenient for finding the impulse response (natural response)

e Shown for distinct poles; Modified for repeated roots

e Terms for complex conjugate poles can be combined to get responses of type
exp(pirt) cos(pijt + )
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Applicability of Laplace transforms to circuit analysis

Circuits with lumped R, L, C and controlled sources

@ Causal, with natural responses of the type exp(pt)

@ Laplace transform of the impulse response converges with o greater than the
largest real part among all the poles

.. Can be used for analyzing the total response of any circuit (even unstable ones)
with inputs which have well-defined Laplace transform

@ Don't have to worry about ROC while using the Laplace transform to analyze
circuits with lumped R, L, C and controlled sources

Nagendra Krishnapura https://www.ee.iitm.ac.in/~nagendra/ Circuit Analysis Using Fourier and Laplace Transforms



Analysis using the Laplace transform

Solve for the complete response including initial conditions

Determine the poles and zeros, evaluate stability

Write down the differential equation

Get the Fourier transform (when it exists without impulses) by substituting s = jw

Get the sinusoidal steady-state response
o Response to cos(wot + 0) is |H(jwo)| cos(wot + 6 + ZLH(jwo))

Not convenient for analysis of energy/power
@ Have to use time domain or Fourier transform
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Phasor analysis

@ Only sinusoidal steady-state

@ Convenient for fixed-frequency (e.g. power) or narrowband(e.g. RF) signals
@ Easier to see cancellation of reactances etc., than with Laplace transform
e Laplace transform requires finding zeros of polynomials

@ Maybe easier to see other types of impedance transformation
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Time domain analysis

@ Exact analysis can be tedious
@ Provides a lot of intuition
@ Can handle nonlinearity

@ For some problems frequency-domain analysis can be unwieldy whereas
time-domain analysis is very easy

o e.g. steady-state response of a first order RC filter to a square wave—try using the
Fourier series and transfer functions at the fundamental frequency and its harmonics!
@ Responseto >, ax exp(jkwot) is 3, axH(jkwo) exp(jkwot)

Practice all techniques on a large number of problems so that you can attack any
problem
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