Circuit Analysis Using Fourier and Laplace Transforms

EE2015: Electrical Circuits and Networks

Nagendra Krishnapura https://www.ee.iitm.ac.in/~nagendra/

> Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

July-November 2017

Circuit Analysis Using Fourier and Laplace Transforms

Based on

- exp(st) being an eigenvector of linear systems
 - Steady-state response to exp(st) is $H(s) \exp(st)$ where H(s) is some scaling factor
- Signals being representable as a sum (integral) of exponentials exp(st)

Fourier series

Periodic x(t) can be represented as sums of complex exponentials

- x(t) periodic with period T₀
- Fundamental (radian) frequency $\omega_0 = 2\pi/T_0$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k \exp(jk\omega_0 t)$$

- x(t) as a weighted sum of orthogonal basis vectors $\exp(jk\omega_0 t)$
- Fundamental frequency ω_0 and its harmonics
- a_k : Strength of k^{th} harmonic
- Coefficients a_k can be derived using the relationship

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) \exp(-jk\omega_0 t) dt$$

• "Inner product" of x(t) with $\exp(jk\omega_0 t)$

Fourier series

Alternative form

$$x(t) = a_0 + \sum_{k=1}^{\infty} b_k \cos(k\omega_0 t) + c_k \sin(k\omega_0 t)$$

• Coefficients b_k and c_k can be derived using the relationship

$$b_k = \frac{2}{T_0} \int_0^{T_0} x(t) \cos(k\omega_0 t) dt$$

$$c_k = \frac{2}{T_0} \int_0^{T_0} x(t) \sin(k\omega_0 t) dt$$

Another alternative form

$$x(t) = a_0 + \sum_{k=1}^{\infty} d_k \cos(k\omega_0 t + \phi_k)$$

• Coefficients b_k and c_k can be derived using the relationship

$$d_k = \sqrt{b_k^2 + c_k^2}$$

$$\phi_k = -\tan^{-1}\left(\frac{c_k}{b_k}\right)$$

Fourier series

If x(t) satisfies the following (Dirichlet) conditions, it can be represented by a Fourier series

• x(t) must be absolutely integrable over a period

$$\int_0^{T_0} |x(t)| dt \text{ must exist}$$

- x(t) must have a finite number of maxima and minima in the interval $[0, T_0]$
- x(t) must have a finite number of discontinuities in the interval $[0, T_0]$

Fourier transform

• Aperiodic x(t) can be expressed as an integral of complex exponentials

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{\omega}(\omega) \exp(j\omega t) d\omega$$

- x(t) as a weighted sum (integral) of orthogonal vectors $\exp(j\omega t)$
- ullet Continuous set of frequencies ω
- $X_{\omega}(\omega)d\omega$: Strength of the component $\exp(j\omega t)$
- $X_{\omega}(\omega)$: Fourier transform of x(t)
- $X_{\omega}(\omega)$ can be derived using the relationship

$$X_{\omega}(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

• "Inner product" of x(t) with $\exp(j\omega t)$

Fourier seies

If x(t) satisfies either of the following conditions, it can be represented by a Fourier transform

• Finite L₁ norm

$$\int_{-\infty}^{\infty} |x(t)| \, dt < \infty$$

• Finite L2 norm

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$$

- Many common signals such as sinusoids and unit step fail these criteria
 - Fourier transform contains impulse functions
 - · Laplace transform more convenient

Fourier transform

- x(t) in volts $\Rightarrow X_{\omega}(\omega)$ has dimensions of volts/frequency
- $X_{\omega}(\omega)$: Density over frequency
- Traditionally, Fourier transform $X_f(f)$ defined as density per "Hz" (cyclic frequency)
- Scaling factor of $1/2\pi$ when integrated over ω (radian frequency)

$$x(t) = \int_{-\infty}^{\infty} X_f(f) \exp(j2\pi f t) df$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{\omega}(\omega) \exp(j\omega t) d\omega$$

- $X_{\omega}(\omega) = X_f(\omega/2\pi)$
- $X_f(f)$: volts/Hz (density per Hz) if x(t) is a voltage signal

$$X_f(t) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt$$

$$X_{\omega}(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

Fourier transform as a function of $j\omega$

• If $j\omega$ is used as the independent variable

$$X(t) = \frac{1}{j2\pi} \int_{-j\infty}^{j\infty} X(j\omega) \exp(j\omega t) d(j\omega)$$

- $X(j\omega) = X_{\omega}(\omega)$
- Same function, but $j\omega$ is the independent variable
- Scaling factor of $1/j2\pi$
- \bullet With $j\omega$ as the independent variable, the definition is the same as that of the Laplace transform

Fourier transform pairs

• Signals in $-\infty \le t \le \infty$

$$\begin{array}{cccc} 1 & \leftrightarrow & 2\pi\delta(\omega) \\ \exp(j\omega_0t) & \leftrightarrow & 2\pi\delta(\omega-\omega_0) \\ \cos(\omega_0t) & \leftrightarrow & \pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0) \\ \sin(\omega_0t) & \leftrightarrow & \frac{\pi}{j}\delta(\omega-\omega_0)-\frac{\pi}{j}\delta(\omega+\omega_0) \\ \exp(-a|t|) & \leftrightarrow & \frac{2a}{a^2+\omega^2} \end{array}$$

Not very useful in circuit analysis

Fourier transform pairs

• Signals in $0 \le t \le \infty$

$$\begin{array}{cccc} u(t) & \leftrightarrow & \pi\delta(\omega) + \frac{1}{j\omega} \\ \\ \exp(j\omega_0t)u(t) & \leftrightarrow & \pi\delta(\omega-\omega_0) + \frac{1}{j\left(\omega-\omega_0\right)} \\ \\ \cos(\omega_0t)u(t) & \leftrightarrow & \pi\delta(\omega-\omega_0) + \pi\delta(\omega+\omega_0) + \frac{j\omega}{\omega_0^2-\omega^2} \\ \\ \sin(\omega_0t)u(t) & \leftrightarrow & \frac{\pi}{j}\delta(\omega-\omega_0) - \frac{\pi}{j}\delta(\omega+\omega_0) + \frac{\omega_0}{\omega_0^2-\omega^2} \\ \\ \exp(-at)u(t) & \leftrightarrow & \frac{1}{j\omega+a} \end{array}$$

• Useful for analyzing circuits with inputs starting at t = 0

Circuit analysis using the Fourier transform

- For an input $\exp(j\omega t)$, steady state output is $H(j\omega) \exp(j\omega t)$
- A general input x(t) can be represented as a sum (integral) of complex exponentials $\exp(j\omega t)$ with weights $X(j\omega)d\omega/2\pi$

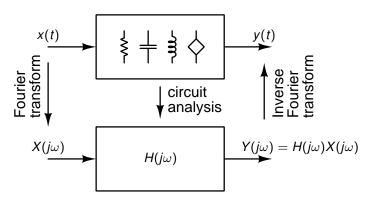
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega$$

• Linearity \Rightarrow steady-state output y(t) is the superposition of responses $H(j\omega) \exp(j\omega t)$ with the same weights $X(j\omega)d\omega/2\pi$

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overbrace{X(j\omega)H(j\omega)}^{Y(j\omega)} \exp(j\omega t) d\omega$$

• Therefore, y(t) is the inverse Fourier transform of $Y(j\omega) = H(j\omega)X(j\omega)$

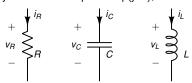
Circuit analysis using the Fourier transform



- Calculate X(jω)
- Calculate H(jω)
 - Directly from circuit analysis
 - · From differential equation, if given
- Calculate (look up) the inverse Fourier transform of $H(j\omega)X(j\omega)$ to get y(t)

Circuit analysis using the Fourier transform

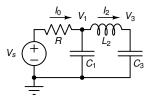
• In steady state with an input of $\exp(j\omega t)$, "Ohms law" also valid for L, C



		v(t)	i(t)	v(t)/i(t)
Resistor	$v_R = Ri_R$	$RI_R \exp(j\omega t)$	$I_R \exp(j\omega t)$	R
Inductor	$v_L = L \left(di_L / dt \right)$	$j\omega LI_L \exp(j\omega t)$	$I_L \exp(j\omega t)$	jωL
Capacitor	$i_C = C \left(dv_C / dt \right)$	$V_C \exp(j\omega t)$	$j\omega CV_C \exp(j\omega t)$	1/ (<i>jωC</i>)

- I_R , I_L , V_C : Phasors corresponding to i_R , i_L , v_C
- Use analysis methods for resistive circuits with dc sources to determine $H(j\omega)$ as ratio of currents or voltages
 - . e.g. Nodal analysis, Mesh analysis, etc.
- No need to derive the differential equation

Example: Calculating the transfer function



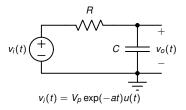
Mesh analysis with currents I₀, I₂

$$\begin{bmatrix} R + \frac{1}{j\omega C_1} & -\frac{1}{j\omega C_1} \\ -\frac{1}{j\omega C_1} & j\omega L_2 + \frac{1}{j\omega C_1} + \frac{1}{j\omega C_3} \end{bmatrix} \begin{bmatrix} I_0 \\ I_2 \end{bmatrix} = \begin{bmatrix} V_s \\ 0 \end{bmatrix}$$

$$\begin{split} \frac{I_0\left(j\omega\right)}{V_s\left(j\omega\right)} &= \frac{\left(j\omega\right)^3 C_1 C_3 L_2 + \left(j\omega\right) \left(C_3 + C_1\right)}{\left(j\omega\right)^3 C_1 C_3 L_2 + \left(j\omega\right)^2 C_3 L_2 + \left(j\omega\right) \left(C_3 + C_1\right) R + 1} \\ \frac{I_2\left(j\omega\right)}{V_s\left(j\omega\right)} &= \frac{\left(j\omega\right) C_3}{\left(j\omega\right)^3 C_1 C_3 L_2 + \left(j\omega\right)^2 C_3 L_2 + \left(j\omega\right) \left(C_3 + C_1\right) R + 1} \end{split}$$

• $V_1 = (I_0 - I_2) / (j\omega C_1), V_3 = I_2 / (j\omega C_3)$

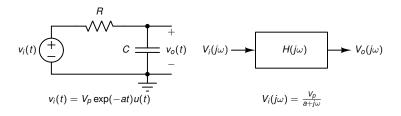
Example: Calculating the response of a circuit



• From direct time-domain analysis, with zero initial condition

$$v_o(t) = \overbrace{\frac{V_p}{1 - aCR} \exp(-at)u(t)}^{\text{Steady-state response}} - \overbrace{\frac{V_p}{1 - aCR} \exp(-t/RC)u(t)}^{\text{Transient response}}$$

Example: Calculating the response of a circuit



Using Fourier transforms and transfer function

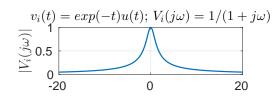
$$V_{o}(j\omega) = \frac{V_{p}}{a+j\omega} \frac{1}{1+j\omega CR}$$
$$= \frac{V_{p}}{1-aCR} \frac{1}{a+j\omega} - \frac{V_{p}}{1-aCR} \frac{CR}{1+j\omega CR}$$

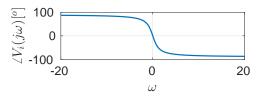
From the inverse Fourier transform

$$v_o(t) = \underbrace{\frac{V_p}{1 - aCR} \exp(-at)u(t)}_{\text{Steady-state response}} \underbrace{\frac{V_p}{1 - aCR} \exp(-t/RC)u(t)}_{\text{Transient response}}$$

We get both steady-state and transient responses with zero initial condition

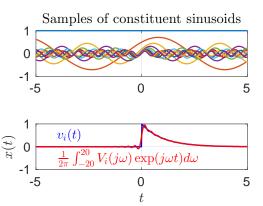
Fourier transform of the input signal





- Fourier transform magnitude and phase ($V_p = 1$, a = 1)
- Shown for $-20 \le \omega \le 20$

Fourier transform of the input signal



- Fourier transform components $V_i(j\omega)d\omega \cdot \exp(j\omega t)$: Sinusoids from $t=-\infty$ to ∞ A small number of sample sinusoids shown above
- The integral is close, but not exactly equal to x(t)
- Extending the frequency range improves the representation

How do we get the total response by summing up steady-state responses?

- Fourier transform components $V_i(j\omega)d\omega \cdot \exp(j\omega t)$: Sinusoids from $t=-\infty$ to ∞
- For any $t > -\infty$, the output is the <u>steady-state</u> response $H(j\omega)V_i(j\omega)d\omega \cdot \exp(j\omega t)$
- Sum (integral) of Fourier transform components produces the input x(t) (e.g. $\exp(-at)u(t)$) which starts from t=0
- Sum (integral) of <u>steady-state</u> responses produces the output including the response to changes at t = 0, i.e. including the transient response
- Inverse Fourier transform of $V_i(j\omega)H(j\omega)$ is the <u>total</u> zero-state response

Accommodating initial conditions

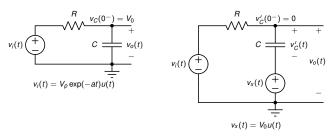
$$v_{C}(0^{-}) = V_{0}$$

$$+ \qquad A$$

$$v_{C} \qquad V_{C} \qquad V_{C}$$

- A capacitor cannot be distinguished from a capacitor in series with a constant voltage source
- An inductor cannot be distinguished from an inductor in parallel with a constant current source
- Initial conditions reduced to zero by inserting sources equal to initial conditions
- Treat initial conditions as extra step inputs and find the solution
 - Step inputs because they start at t = 0 and are constant afterwards

Accommodating initial conditions



$$V_{o}(j\omega) = V_{i}(j\omega) \underbrace{\frac{1}{1+j\omega CR}}_{1+j\omega CR} + V_{x}(j\omega) \underbrace{\frac{j\omega CR}{1+j\omega CR}}_{1+j\omega CR}$$

$$= \frac{V_{p}}{a+j\omega} \frac{1}{1+j\omega CR} + V_{0} \left(\pi\delta(\omega) + \frac{1}{j\omega}\right) \frac{j\omega CR}{1+j\omega CR}$$

$$= \frac{V_{p}}{1-aCR} \left(\frac{1}{a+j\omega} - \frac{CR}{1+j\omega CR}\right) + V_{0} \frac{CR}{1+j\omega CR}$$

$$V_{o}(t) = \frac{V_{p}}{1-aCR} \exp(-at)u(t) + \left(V_{o} - \frac{V_{p}}{1-aCR}\right) \exp(-t/RC)u(t)$$

• Impulse vanishes because $\delta(\omega)H_X(j\omega)=\delta(\omega)H_X(0)$, and $H_X(0)=0$

Fourier transform

- Contains impulses for some commonly used signals with infinite energy
- e.g. u(t), $\cos(\omega_0 t)u(t)$
- Even more problematic for signals like the ramp—Contains impulse derivative
- → Laplace transform eliminates these problems

Laplace transform

• Problem with Fourier transform of x(t) (zero for t < 0)

$$\int_{0-}^{\infty} x(t) \exp(-j\omega t) dt$$
 may not converge

- Multiply x(t) by $\exp(-\sigma t)$ to turn it into a finite energy signal¹
- Fourier transform of $x(t) \exp(-\sigma t)$

$$X_{\sigma,j\omega}(j\omega) = \int_{0-}^{\infty} x(t) \exp(-\sigma t) \exp(-j\omega t) dt$$

• Inverse Fourier transform of $X_{\sigma,j\omega}(j\omega)$ yields $x(t)\exp(-\sigma t)$

$$x(t)\exp(-\sigma t) = \frac{1}{j2\pi} \int_{-j\infty}^{j\infty} X_{\sigma,j\omega}(j\omega) \exp(j\omega t) d(j\omega)$$

• To get x(t), multiply by $\exp(\sigma t)$

$$x(t) = \frac{1}{j2\pi} \int_{-j\infty}^{j\infty} X_{\sigma,j\omega}(j\omega) \exp(\sigma t) \exp(j\omega t) d(j\omega)$$

¹ Allowable values of σ will be clear later

Laplace transform

• Defining $s = \sigma + j\omega$

$$x(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp{(st)} ds$$

- s: complex variable
- Integral carried out on a line parallel to imaginary axis on the s-plane
- Representation of x(t) as a weighted sum of $\exp(st)$ where $s=\sigma+j\omega$
 - s was purely imaginary in case of the Fourier transform
- Well defined weighting function X(s) for a suitable choice of σ
- X(s) (same as $X_{\sigma,j\omega}(j\omega)$ with $s=\sigma+j\omega$) given by

$$X(s) = \int_{0^{-}}^{\infty} x(t) \exp(-st) dt$$

- This is the Laplace transform of x(t)
- ullet Same definition as the Fourier transform expressed as a function of $j\omega$

Laplace transform

• e.g.
$$x(t)=u(t)$$

$$\int_{0^{-}}^{\infty}x(t)\exp(-j\omega t)dt \text{ does not converge}$$

$$\int_{0^{-}}^{\infty}x(t)\exp(-st)dt \text{ converges to } \frac{1}{s}\text{ for }\sigma>0$$

• If σ is such that Fourier transform of $x(t) \exp(-\sigma t)$ converges, x(t) can be written as sum (integral) of complex exponentials with that σ

$$x(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp(st) ds$$

 Steady-state response to exp(st) is H(s) exp(st), so proceed as with Fourier transform

Circuit analysis using the Laplace transform

- For an input $\exp(st)$, steady state output is $H(s) \exp(st)$
- A general input x(t) represented as a sum (integral)² of complex exponentials exp(st) with weights X(s)ds/j2π

$$x(t) = \frac{1}{j2\pi} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s) \exp(st) ds$$

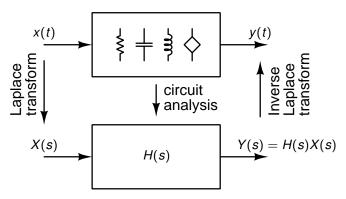
• By linearity, steady-state y(t) is the superposition of responses $H(s) \exp(st)$ with weights $X(s)ds/j2\pi$

$$y(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} \overbrace{X(s)H(s)}^{Y(s)} \exp(st) ds$$

• Therefore, y(t) is the inverse Laplace transform of Y(s) = H(s)X(s)

 $^{^2\}sigma$ is some value with which X(s) can be found; Value not relevant to circuit analysis as long as it exists.

Circuit analysis using the Laplace transform



- Calculate X(s)
- Calculate H(s)
 - Directly from circuit analysis
 - · From differential equation, if given
- Calculate (look up) the inverse Laplace transform of H(s)X(s) to get y(t)

Laplace transform pairs

• Signals in $0 \le t \le \infty$

$$u(t) \leftrightarrow \frac{1}{s}$$

$$tu(t) \leftrightarrow \frac{1}{s^2}$$

$$\exp(j\omega_0 t)u(t) \leftrightarrow \frac{1}{s-j\omega_0}$$

$$\cos(\omega_0 t)u(t) \leftrightarrow \frac{s}{s^2+\omega_0^2}$$

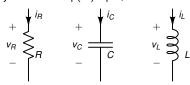
$$\sin(\omega_0 t)u(t) \leftrightarrow \frac{\omega_0}{s^2+\omega_0^2}$$

$$\exp(-at)u(t) \leftrightarrow \frac{1}{s+a}$$

$$t \exp(-at)u(t) \leftrightarrow \frac{1}{(s+a)^2}$$

Circuit analysis using the Laplace transform

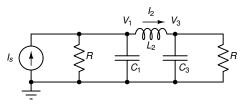
• In steady-state with exp(st) input, "Ohms law" also valid for L, C



		<i>v</i> (<i>t</i>)	i(t)	v(t)/i(t)
Resistor	$v_R = Ri_R$	$RI_R \exp(st)$	$I_R \exp(st)$	R
Inductor	$v_L = L(di_L/dt)$	$sLI_L \exp(st)$	$I_L \exp(st)$	sL
Capacitor	$i_C = C (dv_C/dt)$	$V_C \exp(st)$	$sCV_C \exp(st)$	1/(<i>sC</i>)

- Use analysis methods for resistive circuits with dc sources to determine H(s) as ratio of currents or voltages
 - e.g. Nodal analysis, Mesh analysis, etc.
- No need to derive the differential equation

Example: Calculating the transfer function



Nodal analysis with voltages V₁, V₂

$$\begin{bmatrix} \frac{1}{R} + sC_1 + \frac{1}{sL_2} & -\frac{1}{sL_2} \\ -\frac{1}{sL_2} & \frac{1}{sL_2} + sC_3 + \frac{1}{R} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} I_s \\ 0 \end{bmatrix}$$

$$\frac{V_1}{I_s} = R \frac{s^2 C_3 L_2 + s L_2 / R + 1}{s^3 C_1 C_3 L_2 R + s^2 (C_1 + C_3) L_2 + s ((C_1 + C_3) R + L_2 / R) + 2}$$

$$\frac{V_2}{I_s} = R \frac{1}{s^3 C_1 C_3 L_2 R + s^2 (C_1 + C_3) L_2 + s ((C_1 + C_3) R + L_2 / R) + 2}$$

Accommodating initial conditions

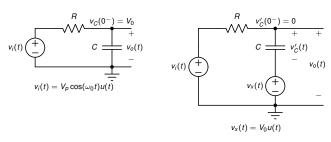
$$v_{C}(0^{-}) = V_{0}$$
 $v_{C}(0^{-}) = V_{0}$
 $v_{C}(0^{-}) = V_{0}$

- Initial conditions reduced to zero; extra step inputs
- Circuit interpretation of the derivative operator

$$\begin{array}{ccc} \frac{dx}{dt} & \leftrightarrow & sX(s) - x(0^{-}) \\ \frac{dx}{dt} & \leftrightarrow & s\left(X(s) - \frac{x(0^{-})}{s}\right) \end{array}$$

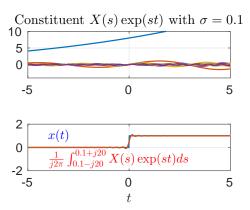
Extra step input x(0[−])/s

Calculating the output with initial conditions



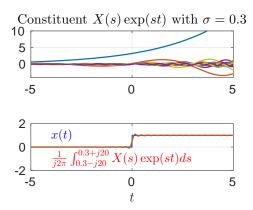
$$\begin{array}{lcl} V_o(s) & = & V_\rho \frac{s}{s^2 + \omega_0^2} \frac{1}{1 + sCR} + \frac{V_0}{s} \frac{sCR}{1 + sCR} \\ & = & \frac{V_\rho}{1 + (\omega_0 CR)^2} \frac{s + (\omega_0 CR) \omega_0}{s^2 + \omega_0^2} + \left(V_0 - \frac{V_\rho}{1 + (\omega_0 CR)^2}\right) \frac{CR}{1 + sCR} \\ & & \text{Steady-state response} & \text{Transient response} \\ & V_o(t) & = & \frac{V_\rho}{\sqrt{1 + (\omega_0 CR)^2}} \cos{(\omega_0 t - \phi) u(t)} + \overline{\left(V_0 - \frac{V_\rho}{1 + (\omega_0 CR)^2}\right) \exp(-t/RC) u(t)} \\ & \phi & = & \tan^{-1}{(\omega_0 CR)} \end{array}$$

Laplace transform: exp(st) components and convergence



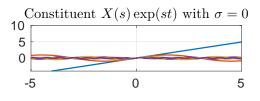
- x(t) = u(t); X(s) = 1/s
- ullet Sum of exponentially modulated sinusoids with $\sigma=0.1$ converges to the unit step

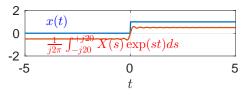
Laplace transform: exp(st) components and convergence



- x(t) = u(t); X(s) = 1/s
- ullet Sum of exponentially modulated sinusoids with $\sigma=0.3$ converges to the unit step
- Any σ in the region of convergence (ROC) would do
- For u(t), ROC is $\sigma > 0$

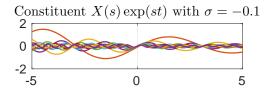
Laplace transform: exp(st) components and convergence

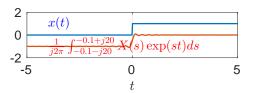




- x(t) = u(t); X(s) = 1/s
- For u(t), ROC is $\sigma > 0$
- Sum of exponentially modulated sinusoids with $\sigma=0$ does not converge to the unit step
- This is the Fourier transform of u(t) with $\pi\delta(\omega)$ missing
- Zero dc part in the sum

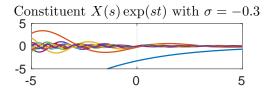
Laplace transform: exp(st) components and convergence

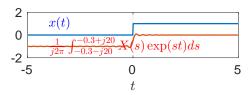




- x(t) = u(t); X(s) = 1/s
- For u(t), ROC is $\sigma > 0$
- Sum of exponentially modulated sinusoids with $\sigma = -0.1$ does not converge to u(t), but converges of -u(-t)!
- Inverse Laplace transform formula uniquely defines the function only if the ROC is also specified
- Inverse Laplace transform of X(s) = 1/s with ROC of $\sigma < 0$ is -u(-t)

Laplace transform: exp(st) components and convergence



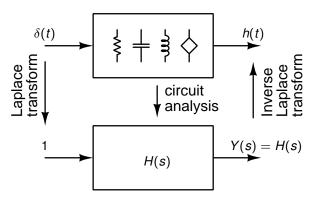


- x(t) = u(t); X(s) = 1/s
- For u(t), ROC is $\sigma > 0$
- Sum of exponentially modulated sinusoids with $\sigma = -0.3$ does not converge to u(t), but converges of -u(-t)!
- Inverse Laplace transform formula uniquely defines the function only if the ROC is also specified
- Inverse Laplace transform of X(s) = 1/s with ROC of $\sigma < 0$ is -u(-t)

Laplace transform: Uniqueness, causality, and region of convergence

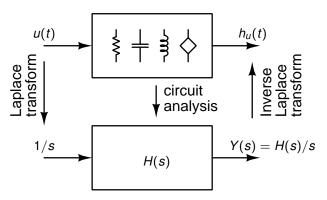
- ullet Laplace transform F(s) uniquely defines the function only if the ROC is also specified
- Inverse Laplace transform of F(s) can be f(t)u(t) (a right-sided or causal signal) as well as -f(t)u(-t) (a left-sided or anti-causal signal) depending on the choice of σ
- Speficying causality or the ROC removes the ambiguity
- One-sided ($0 < t < \infty$) Laplace transform applies only to causal signals

Impulse response



- Laplace transform of $\delta(t)$ is 1
- Transfer function H(s): Laplace transform of the impulse response h(t)
- Impulse response usually calculated from the Laplace transform

Step response



- Laplace transform of u(t) is 1/s
- H(s)/s: Laplace transform of the unit step response $h_u(t)$
- Step response usually calculated from the Laplace transform

Circuits with R, L, C, controlled sources

- Transfer function: Rational polynomial in s
 - Transfer function from any voltage or current x(t) to any voltage or current y(t)

$$H(s) = \frac{Y(s)}{X(s)} = \frac{b_M s^M + b_{M-1} s^{M-1} + \dots + b_1 s + b_0}{a_N s^N + a_{N-1} s^{N-1} + \dots + a_1 s + a_0}$$

- H(s) of the form N(s)/D(s) where N(s) and D(s) are polynomials in s
- Differential equation relating y and x

$$a_{N} \frac{d^{N} y}{dt^{N}} + a_{N-1} \frac{d^{N-1} y}{dt^{N-1}} + \dots + a_{1} \frac{dy}{dt} + a_{0} y = b_{M} \frac{d^{M} x}{dt^{M}} + b_{M-1} \frac{d^{M-1} x}{dt^{M-1}} + \dots + b_{1} \frac{dx}{dt} + b_{0} x$$

- *D*(*s*) corresponds to LHS of the differential equation
 - Highest power of s in D(s): Order of the transfer function
- N(s) corresponds to RHS of the differential equation
- Transfer function: Convenient way of getting the differential equation

Transfer function: Rational polynomial

Transfer function: Rational polynomial in s

$$H(s) = \frac{N(s)}{D(s)} = \frac{b_M s^M + b_{M-1} s^{M-1} + \ldots + b_1 s + b_0}{a_N s^N + a_{N-1} s^{N-1} + \ldots + a_1 s + a_0}$$

- Convenient form for finding dc gain b_0/a_0 , high frequency behavior $(b_M/a_N) s^{M-N}$
- Transfer function: Factored into first and second order polynomials

$$H(s) = \frac{N(s)}{D(s)} = \frac{N_1(s)N_2(s)\cdots N_K(s)}{D_1(s)D_2(s)\cdots D_L(s)}$$

- K = M/2 (even M), K = (M+1)/2 (odd M); L = N/2 (even N), L = (N+1)/2 (odd N)
- N_k(s): All second order (even M) or one first order and the rest second order (odd M);
 Similarly for D_l(s)
- Convenient for realizing as a cascade; combining different N_k and D_l

Transfer function: Factored into terms with zeros and poles

Transfer function: zero, pole, gain form

$$H(s) = \frac{N(s)}{D(s)} = k \frac{(s - z_1)(s - z_2) \cdots (s - z_M)}{(s - p_1)(s - p_2) \cdots (s - p_N)}$$

- Zeros z_k, poles p_k, gain k
- Convenient for seeing poles and zeros
- Transfer function: Alternative zero, pole, gain form³

$$H(s) = \frac{N(s)}{D(s)} = k_0 \frac{\left(1 - \frac{s}{z_1}\right)\left(1 - \frac{s}{z_2}\right)\cdots\left(1 - \frac{s}{z_M}\right)}{\left(1 - \frac{s}{\rho_1}\right)\left(1 - \frac{s}{\rho_2}\right)\cdots\left(1 - \frac{s}{\rho_N}\right)}$$

- Zeros z_k , poles p_k , gain k
- k₀: dc gain
- Convenient for seeing poles and zeros
- Convenient for drawing Bode plots

Transfer function: Partial fraction expansion

• Transfer function: Partial fraction expansion

$$H(s) = \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2} + \ldots + \frac{c_N}{s - p_N}$$

$$h(t) = c_1 \exp(p_1 t) + c_2 \exp(p_2 t) + \ldots + c_N \exp(p_N t)$$

- Convenient for finding the impulse response (natural response)
- Shown for distinct poles; Modified for repeated roots
- Terms for complex conjugate poles can be combined to get responses of type $\exp(p_1,t)\cos(p_1,t+\phi)$

Applicability of Laplace transforms to circuit analysis

Circuits with lumped R, L, C and controlled sources

- Causal, with natural responses of the type exp(pt)
- ullet Laplace transform of the impulse response converges with σ greater than the largest real part among all the poles
- ... Can be used for analyzing the total response of any circuit (even unstable ones) with inputs which have well-defined Laplace transform
- Don't have to worry about ROC while using the Laplace transform to analyze circuits with lumped R, L, C and controlled sources

Analysis using the Laplace transform

- Solve for the complete response including initial conditions
- Determine the poles and zeros, evaluate stability
- Write down the differential equation
- Get the Fourier transform (when it exists without impulses) by substituting $s = i\omega$
- Get the sinusoidal steady-state response
 - Response to $\cos(\omega_0 t + \theta)$ is $|H(j\omega_0)|\cos(\omega_0 t + \theta + \angle H(j\omega_0))$
- Not convenient for analysis of energy/power
 - Have to use time domain or Fourier transform

Phasor analysis

- Only sinusoidal steady-state
- Convenient for fixed-frequency (e.g. power) or narrowband(e.g. RF) signals
- Easier to see cancellation of reactances etc., than with Laplace transform
 - Laplace transform requires finding zeros of polynomials
- Maybe easier to see other types of impedance transformation

Time domain analysis

- Exact analysis can be tedious
- Provides a lot of intuition.
- Can handle nonlinearity
- For some problems frequency-domain analysis can be unwieldy whereas time-domain analysis is very easy
 - e.g. steady-state response of a first order RC filter to a square wave—try using the Fourier series and transfer functions at the fundamental frequency and its harmonics!
 - Response to $\sum_k a_k \exp(jk\omega_0 t)$ is $\sum_k a_k H(jk\omega_0) \exp(jk\omega_0 t)$

Practice all techniques on a large number of problems so that you can attack any problem