Tutorial 1: Electric \& Magnetic Cirmits
Many of these are textbook problems. I have scanned and pasted them here for the benefit of students
13. Employ nodal analysis to obtain a value for v_{x} as indicated in Fig. 4.43.

By inspection, waite the MNA equations.

FIGURE 4.43
15. Determine the nodal voltages indicated in the circuit of Fig. 4.45. Write the MNA equations

FIGURE 4.45
Modified
W7. With the help of nodal analysis on the circuit of Fig. 4.47, find $(a) v_{A} ;(b)$ the power dissipated in the 2.5Ω resistor.

FIGURE 4.47

FIGURE 4.49

Determine the power supplied by the 2 A source in the circuit of Fig. 4.54.
 Use your favorite method of analysis.

FIGURE 4.54

FIGURE 4.51

Problenis 687

FIGURE 4.60
Use mesh analysis to determine the current labeled i in the circuit of Fig. 4.60. . Use mesh analysis to find i_{x} in the circuit shown in Fig, 4.61.

FIGURE 4.61

FIGURE 4.63

FIGURE 4.71

Find i_{A} in the circuit of Fig. 4.71.
Y. Use the supermesh concept to determine the power supplied by the 2.2 V source of Fig. 4.72.

FIGURE 4.72 Fig. 4.74.

Prob. 12
Determine i_{x} above if (N1 \& N2 are grounded.

Prob. 13

Sketch $V_{c}(t)$ if $I(t)$ is given by the following

$$
\begin{aligned}
I(t) & =0, \quad t<0 \\
& =\cos (2 \pi t), \quad t \geq 0
\end{aligned}
$$

The capacitor is initially uncharged.

Prob. 14

Determine L_{A}, L_{B}, L_{C} if the two networks above are equivalent.

Prob. 15
(1)

(2)

The networks above are equivalent. Determine $R_{x}, R_{y} \& R_{z}$ in terms of R_{A}, R_{B}, R_{C}.

Prob. 16

The network N consists of resistors only. Let P_{v} denote the power dissipated in N
when V_{A} is present.

Let P_{I} denote the power dissipation in N when N is excited by I_{B}.

Determine the power dissipated in N. Is this result true for any arbitrary network?

